Skip to main content
Log in

Bilinear form, auto-Bäcklund transformations and kink solutions of a \((3+1)\)-dimensional variable-coefficient Kadomtsev-Petviashvili-like equation in a fluid

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Fluid mechanics has been linked to a wide range of disciplines, such as atmospheric science, oceanography and astrophysics. In this paper, we focus our attention on a \((3+1)\)-dimensional variable-coefficient Kadomtsev-Petviashvili-like equation in a fluid. Through the Hirota method, we derive a bilinear form. We obtain an auto-Bäcklund transformation based on the truncated Painlev\(\acute{\textrm{e}}\) expansion and a bilinear Bäcklund transformation based on the bilinear form. With the variable coefficients \(\alpha (t)\), \(\beta (t)\), \(\gamma (y,t)\), \(\delta (t)\) and \(\mu (t)\) taken as certain constraints, one- and two-kink solutions are shown. Based on the one-kink solutions, we take \(\gamma (y,t)\) as the linear and trigonometric functions of y, and then give the ring-type and periodic-type one-kink waves, where t and y are the independent variables. According to the two-kink solutions, we obtain the parabolic-type, linear-type and periodic-type kink waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. H Triki and A M Wazwaz, Commun. Nonlinear Sci. Numer. Simulat. 19, 404 (2014)

    Article  ADS  Google Scholar 

  2. L Wang, Y T Gao and F H Qi, Ann. Phys. 327, 1974 (2012)

  3. S Boscolo and C Finot, Opt. Laser Technol. 131, 106439 (2020)

    Article  Google Scholar 

  4. A Moradi, Phys. Lett. A 391, 127103 (2021)

    Article  Google Scholar 

  5. S Kumar, PramanaJ. Phys. 95, 161 (2021)

  6. X Y Gao, Phys. Fluids 35, 127106 (2023)

  7. F Y Liu, Y T Gao, X Yu and C C Ding, Nonlinear Dyn. 108, 1599 (2022)

  8. F Y Liu and Y T Gao, Appl. Math. Lett. 132, 108094 (2022)

  9. X H Wu and Y T Gao, Appl. Math. Lett. 137, 108476 (2023)

  10. X H Wu, Y T Gao, X Yu, L Q Li and C C Ding, Nonlinear Dyn. 111, 5641 (2023)

  11. N Nirmala, M J Vedan and B V Baby, J. Math. Phys. 27, 2640 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  12. T Brugarino, J. Math. Phys. 30, 1013 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  13. S Boscarino and S Y Cho, Appl. Math. Lett. 123, 107488 (2022)

    Article  Google Scholar 

  14. C I Martin, Appl. Math. Lett. 124, 107690 (2022)

    Article  Google Scholar 

  15. Z Amjad, Eur. Phys. J. Plus 137, 1036 (2022)

    Article  Google Scholar 

  16. R Singh and A M Wazwaz, Eur. Phys. J. Plus 137, 63 (2022)

    Article  Google Scholar 

  17. C K Kuo and W X Ma, Wave Random Complex 32, 629 (2022)

    Article  ADS  Google Scholar 

  18. B Ghanbari and C K Kuo, Phys. Scr. 96, 045203 (2021)

    Article  ADS  Google Scholar 

  19. T S Moretlo, B Muatjetjeja and A R Adem, Iran. J. Sci. Technol. Trans. Sci. 45, 1037 (2021)

    Article  MathSciNet  Google Scholar 

  20. Y Feng and S Bilige, Nonlinear Dyn. 106, 879 (2021)

    Article  Google Scholar 

  21. Y Kodama and Y J Ablowitz, Stud. Appl. Math. 64, 225 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  22. C C Hu, B Tian, X Y Wu, Y Q Yuan and Z Du, Eur. Phys. J. Plus 133, 40 (2018)

    Article  Google Scholar 

  23. Y Zhang and J Pang, J. Appl. Math. 2019, 7172860 (2019)

    Article  Google Scholar 

  24. S Kumar and B Mohan, Phys. Scr. 96, 125255 (2021)

    Article  ADS  Google Scholar 

  25. R Hirota, Direct method in soliton theory (Springer, Berlin, 1980)

    Book  Google Scholar 

  26. R Hirota, Phys. Rev. Lett27, 1192 (1971)

    Article  ADS  Google Scholar 

  27. M Vlieg-Hulstman and W D Halford, Comput. Math. Appl. 29, 39 (1995)

    Article  MathSciNet  Google Scholar 

  28. J J Nimmo, Phys. Lett. A 99, 279 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  29. Y X Ma, B Tian, Q X Qu, C C Wei and X Zhao, Chin. J. Phys. 73, 600 (2021)

    Article  Google Scholar 

  30. Z Yan and S Lou, Appl. Math. Lett. 104, 106271 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under Grant Nos 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, China) (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YQ., Tian, B., Shen, Y. et al. Bilinear form, auto-Bäcklund transformations and kink solutions of a \((3+1)\)-dimensional variable-coefficient Kadomtsev-Petviashvili-like equation in a fluid. Pramana - J Phys 98, 66 (2024). https://doi.org/10.1007/s12043-024-02740-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02740-3

Keywords

PACS Nos

Navigation