Skip to main content
Log in

Heat and mass transfer on MHD squeezing flow through the porous media using the Bernoulli wavelet method

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The squeezing of an incompressible magnetohydrodynamic (MHD) fluid between two parallel plates is a primary type of flow that is commonly observed in several hydrodynamical tools and machines. Compression and injection molding, polymer processing and modelling of lubrication systems are several practical examples of squeezing flows. The aim of the present work is to compute the heat and mass transfer on MHD squeezing flow of a viscous fluid through a porous medium using Bernoulli wavelet numerical method. Mathematically simulating the flow results in a highly nonlinear coupled ordinary differential equation (ODE) by combining conservation laws and similarity transformations. Our outcome illustrates that the Bernoulli wavelet method is immensely capable and accessible for finding solutions to this type of coupled nonlinear ODEs. The results are in very good agreement for coupled nonlinear ODEs in engineering applications. The plots clarify and thoroughly illustrate the flow behaviour when the physical factors are involved. The normalisation of the flow behaviour by the magnetic field show that it may be utilised to control various flows. Moreover, the squeeze number affects the velocity, temperature and concentration profiles, which is a crucial factor in these kinds of issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. R C Eberhart and A Shitzer, Heat transfer in medicine and biology: Analysis and applications (Springer Science and Business Media, 2012)

  2. R C Eberhart and A Shitzer, Heat transfer in medicine and biology: Analysis and applications (Springer Science and Business Media, 2012) Vol. 2

  3. L Theodore, Heat transfer applications for the practicing engineer (John Wiley and Sons, 2011)

  4. E L Cussler, Diffusion: Mass transfer in fluid systems (Cambridge University Press, 2009)

  5. U N Das, R Deka and V M Soundalgekar, Forsch. Ingenieurwes. 60(10), 284 (1994)

    Article  Google Scholar 

  6. H M Hofmann, M Kind and H Martin, Int. J. Heat Mass Transf. 50(19–20), 3957 (2007)

    Article  Google Scholar 

  7. P Dong, G Xie and M Ni, Energy 206, 117977 (2020)

    Article  Google Scholar 

  8. W F Xia, S Ahmad, M N Khan, H Ahmad, A Rehman, J Baili and T N Gia, Case Stud. Therm. Eng. 32, 101893 (2022)

    Google Scholar 

  9. Z Sun, Z Shi, X Geng, Z Li and Q Sun, Aerospace Sci. Technol. 133, 108131 (2023)

    Google Scholar 

  10. J Engmann, C Servais and A S Burbidge, J. Non-Newton. Fluid Mech. 132(1–3), 1 (2005)

    Google Scholar 

  11. M J Stefan, Math.-Naturwissen. 69, 713 (1874)

    Google Scholar 

  12. Z Zhang, J Xu and C Drapaca, Microfluid. Nanofluidics 22, 1 (2018) 535

    Article  Google Scholar 

  13. M D Levenson and R M Shelby, J. Mod. Opt. 34(6–7), 775 (1987)

    Article  ADS  Google Scholar 

  14. P Grünwald and W Vogel, Phys. Rev. Lett. 109(1), 013601 (2012)

    Article  ADS  Google Scholar 

  15. K A Kumar, J R Reddy, V Sugunamma and N Sandeep, Alex. Eng. J. 57(1), 435 (2018)

    Article  Google Scholar 

  16. A Kumar, V Sugunamma and N Sandeep, J. Non-Equil. Thermodyn. 43(4), 327 (2018)

    Google Scholar 

  17. K A Kumar, V Sugunamma, N Sandeep and M Mustafa, Sci. Rep. 9(1), 14706 (2019)

    Article  ADS  Google Scholar 

  18. M V Krishna and A J Chamkha, Results Phys. 15, 102652 (2019)

    Article  Google Scholar 

  19. N Ameer Ahamad, M Veera Krishna and A J Chamkha, J. Nanofluids 9(3), 177 (2020)

  20. A C Venkata Ramudu, K Anantha Kumar, V Sugunamma and N Sandeep, J. Therm. Anal. Calorim. 147, 1 (2022)

  21. K Anantha Kumar, A C Venkata Ramudu, V Sugunamma and N Sandeep, Int. J. Ambient Energy 43(1), 8400 (2022)

  22. K Anantha Kumar, V Sugunamma and N Sandeep, Waves Random Complex Media 1-16 (2022)

  23. V Bityurin, V Zeigarnik and A Kuranov, 7th Plasma Dyns. Lasers Conf.  2355 (1996)

  24. G Herdrich, M Auweter-Kurtz, M Fertig, A Nawaz and D Petkow, Vacuum 80(11–12), 1167 (2006)

    Article  ADS  Google Scholar 

  25. C Das, G Wang and F Payne, Sens. Actuator A: Phys. 201, 43 (2013)

    Article  Google Scholar 

  26. O M Al-Habahbeh, M Al-Saqqa, M Safi and T A Khater, Alex. Eng. J. 55(2), 1347 (2016)

    Article  Google Scholar 

  27. M V Krishna, B V Swarnalathamma and A J Chamkha, J. Ocean Eng. Sci. 4(3), 263 (2019)

    Article  Google Scholar 

  28. M V Krishna, N A Ahamad and A J Chamkha, Alex. Eng. J. 59(2), 565 (2020)

    Article  Google Scholar 

  29. M V Krishna, K Jyothi and A J Chamkha, J. Porous Media 23(8), 751 (2020)

    Article  Google Scholar 

  30. M V Krishna and A J Chamkha, Int. Commun. Heat Mass Transf. 113, 104494 (2020)

    Article  Google Scholar 

  31. M Veera Krishna, N Ameer Ahamad and A J Chamkha, J. Nanofluids 10(2), 259 (2021)

  32. G Magalakwe, M L Lekoko, K Modise and C M Khalique, Alex. Eng. J. 58(3), 1001 (2019)

    Article  Google Scholar 

  33. N Ahmed, U Khan, Z A Zaidi, S U Jan, A Waheed and S T Mohyud-Din,  J. Porous Media 17(10), 861 (2014)

    Article  Google Scholar 

  34. I Ullah, M T Rahim, H Khan and M Qayyum, Uni. Bucharest Sci. Bull. Series A. Appl. Math. Phys. 78(2), 1223 (2016)

  35. I Ullah, M T Rahim, H Khan and M Qayyum, Propuls. Power Res. 8(1), 69 (2019)

    Article  Google Scholar 

  36. N A M Noor, S Shafie and M A Admon, Phys. Scr. 95(10), 105213 (2020)

    Article  ADS  Google Scholar 

  37. N A M Noor, S Shafie and M A Admon, Phys. Scr. 96(3), 035216 (2021)

    Article  ADS  Google Scholar 

  38. S I Khan, S T Mohyud-Din and B Bin-Mohsin, Surf. Rev. Lett. 24(02), 1750022 (2017)

    Article  ADS  Google Scholar 

  39. C K Chui, Wavelets (Soc. Indust. Appl. Math., 1997)

  40. M Shamsi and M Razzaghi, Comput. Phys. Commun. 168(3), 187 (2005)

    Article  ADS  Google Scholar 

  41. M Lakestani, M Razzaghi and Dehghan, Math. Probl. Eng. 2006, 096184 (2006)

  42. G BeylkinR Coifman and V Rokhlin, Commun. Pure Appl. Math. 44(2), 141 (1991)

    Article  Google Scholar 

  43. K R Raghunatha and Y Vinod, Int. J. Appl. Comput. Math. 9(3), 22 (2023)

    Article  Google Scholar 

  44. S Kumbinarasaiah and K R Raghunatha, Nonlinear Eng. 10(1), 39 (2021)

  45. K R Raghunatha and S Kumbinarasaiah, Int. J. Appl. Comput. Math. 8(1), 25 (2022)

    Article  Google Scholar 

  46. Y Vinod and K R Raghunatha, Heat Transf. 52(1), 983 (2023)

    Article  Google Scholar 

  47. S Kumbinarasaiah and K R Raghunatha, Heat Transf. 51(2), 1568 (2022)

    Article  Google Scholar 

  48. K R Raghunatha, Y Vinod, S N Nagappanavar and Sangamesh, J. Taibah Uni. Sci. 17(1), 2271691 (2023)

  49. K R Raghunatha, Y Vinod and B V Manjunatha, Heat Transf. 1–33 (2023)

  50. K R Raghunatha and Y Vinod, Heat Transf. 1–32 (2023)

  51. S Kumbinarasaiah and M P Preetham, J. Umm. Al-Qura. Univ. Appl. Sci. 9(1), 1 (2023)

  52. M Mustafa, T Hayat and S Obaidat, Meccanica 47(7), 1581 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the reviewers for their useful comments that helped in improving the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Vinod.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghunatha, K.R., Vinod, Y., Nagappanavar, S.N. et al. Heat and mass transfer on MHD squeezing flow through the porous media using the Bernoulli wavelet method. Pramana - J Phys 98, 74 (2024). https://doi.org/10.1007/s12043-024-02736-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02736-z

Keywords

PACS Nos

Navigation