Skip to main content
Log in

Exact diffusion–reaction dynamics for two different confined potentials in the presence of a perfect trap

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the high friction limit, the initial works of the diffusion–reaction system utilising the one-dimensional Smoluchowski equation have been largely explored by a perfect trap term and a relevant system potential. The fast electronic relaxation process in a polar solvent can best be understood using the perfect sink model. The exact dynamics, however, are only available when the trap is placed in the harmonic potential centre. To solve the model equation for the arbitrary placement of the trap, here we have proposed a fresh, slightly uncommon approach. Additionally, we gave exact results to a recently investigated linear confined-type potential for the perfect trap placed arbitrarily. When the trap is positioned at an uphill location relative to the initial distribution, notable non-monotonic effects of the decay properties have been identified for the variation of potential strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K Spendier and V M Kenkre, J. Phys. Chem. B 117, 15639 (2013)

    Article  Google Scholar 

  2. S A Rice, Comprehensive-comprehensive chemical kinetics: Diffusion limited reactions (Elsevier Science Publishers, New York, 1985)

    Google Scholar 

  3. G Wilemski and M Fixman, J. Chem. Phys. 58, 4009 (1973)

    Article  ADS  Google Scholar 

  4. V M Kenkre and P E Parris, Phys. Rev. B 27, 3221 (1983)

    Article  ADS  Google Scholar 

  5. V M Kenkre, Exciton dynamics in molecular crystals and aggregates, Springer tracts in modern physics (Springer, Berlin, 1982) Vol. 94 and references therein.

  6. R P Hemenger, K Lakatos-Lindenberg and R M Pearlstein, J. Chem. Phys. 60, 3271 (1974)

    Article  ADS  Google Scholar 

  7. S Redner, A guide to first-passage processes (Cambridge University Press, Cambridge, UK, 2001)

    Book  Google Scholar 

  8. A Szabo, G Lamm and G H Weiss, J. Stat. Phys. 34, 225 (1984)

    Article  ADS  Google Scholar 

  9. G Abramson and H S Wio, Chaos Solitons Fractals 6, 1 (1995)

    Article  ADS  Google Scholar 

  10. R Saravanan and A Chakraborty, Physica A 536, 120989 (2019)

    Article  MathSciNet  Google Scholar 

  11. R Saravanan and A Chakraborty, Physica A 563, 125317 (2020)

    Article  Google Scholar 

  12. C Samanta and A Chakraborty, Physica A 594, 127061 (2022)

    Article  Google Scholar 

  13. M D Wang, H Yin, R Landick, J Gelles and S M Block, Biophys. J. 72, 1335 (1997)

    Article  ADS  Google Scholar 

  14. M Lindner, G Nir, A Vivante, I T Young and Y Garini, Phys. Rev. E 87, 022716 (2013)

    Article  ADS  Google Scholar 

  15. R C Wade, R R Gabdoulline, S K Ludemann and V Lounnas, Proc. Natl. Acad. Sci. 95, 5942 (1998)

    Article  ADS  Google Scholar 

  16. D R Livesay, P Jambeck, A Rojnuckarin and S Subramaniam, Biochem. 42, 3464 (2003)

    Article  Google Scholar 

  17. G Wilemski and M Fixman, J. Chem. Phys. 60, 878 (1974)

    Article  ADS  Google Scholar 

  18. K Schulten, Z Schulten and A Szabo, Physica A 100, 599 (1980)

    Article  ADS  Google Scholar 

  19. A Szabo, K Schulten and Z Schulten, J. Chem. Phys. 72, 4350 (1980)

    Article  ADS  Google Scholar 

  20. M Ganguly and A Chakraborty, Physica A 484, 163 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. M Ganguly and A Chakraborty, Chem. Phys. Lett. 733, 136673 (2019)

    Article  Google Scholar 

  22. M Ganguly and A Chakraborty, Physica A 536, 122509 (2019)

    Article  MathSciNet  Google Scholar 

  23. M Ganguly and A Chakraborty, Phys. Scr. 95, 115006 (2020)

    Article  ADS  Google Scholar 

  24. M T Robinson, D E Cliffel and G K Jennings, J. Phys. Chem. B 122, 117 (2018)

    Article  Google Scholar 

  25. W Ebeling, F Schweitzer and B Tilch, Biosystems 49, 17 (1999)

    Article  Google Scholar 

  26. L Giuggioli, G Abramson, V M Kenkre, C Parmenter and T Yates, J. Theor. Biol. 240, 126 (2006)

    Article  ADS  Google Scholar 

  27. G R Fleming, Chemical applications of ultrafast spectroscopy (Oxford University Press, Oxford, 1986)

    Google Scholar 

  28. D Ben-Amotz and C B Harris, J. Chem. Phys. 86, 5433 (1987)

    Article  ADS  Google Scholar 

  29. D Ben-Amotz and C B Harris, J. Chem. Phys. 86, 4856 (1987)

    Article  ADS  Google Scholar 

  30. D Ben-Amotz, R Jeanloz and C B Harris, J. Chem. Phys. 86, 6119 (1987)

    Article  ADS  Google Scholar 

  31. B Bagchi, Molecular relaxation in liquids (Oxford University Press, New York, 2012)

    Google Scholar 

  32. R W Schoenlein, L A Peteanu, R A Mathies and C V Shank, Science 254, 412 (1991)

    Article  ADS  Google Scholar 

  33. G Oster and Y Nishijima, J. Am. Chem. Soc. 78, 1581 (1956)

    Article  Google Scholar 

  34. K L Sebastian, Phys. Rev. A 46, R1732 (1992)

    Article  ADS  Google Scholar 

  35. A Samanta and S K Ghosh, Phys. Rev. E 47, 4568 (1993)

    Article  ADS  Google Scholar 

  36. B Bagchi, J. Chem. Phys. 87, 5393 (1987)

    Article  ADS  Google Scholar 

  37. B Bagchi, G R Fleming and D W Oxtoby, J. Chem. Phys. 78, 7375 (1983)

    Article  ADS  Google Scholar 

  38. B Bagchi and G R Fleming, J. Phys. Chem. 94, 9 (1990)

    Article  Google Scholar 

  39. K Spendier, S Sugaya and V M Kenkre, Phys. Rev. E 88, 062142 (2013)

    Article  ADS  Google Scholar 

  40. M Chase, K Spendier and V M Kenkre, J. Phys. Chem. B 120, 3072 (2016)

    Article  Google Scholar 

  41. W T Coffey, Yu P Kalmykov and J T Waldron, The Langevin equation: With applications to stochastic problems in physics, chemistry and electrical engineering (World Scientific, Singapore, 2004)

    Book  Google Scholar 

  42. C Samanta and A Chakraborty, Exploring the impact of a moving sink in a reaction-diffusion system: Exact dynamics for two simple potentials (2023), http://dx.doi.org/10.13140/RG.2.2.28862.77123 (accepted in Pramana–J. Phys.)

  43. R Saravanan and A Chakraborty, A general method to solve diffusion in piece-wise linear potentials in thetime-domain (2020), https://www.researchgate.net/publication/340130039_A_general_method_to_solve_diffusion_in_piece-wise_linear_potentials_in_the_time-domainunpublished.

Download references

Acknowledgements

One of the authors (CS) would like to thank the institute for providing with a Half-Time Research Assistantship fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinmoy Samanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, C., Chakraborty, A. Exact diffusion–reaction dynamics for two different confined potentials in the presence of a perfect trap. Pramana - J Phys 98, 4 (2024). https://doi.org/10.1007/s12043-023-02700-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02700-3

Keywords

PACS

Navigation