Skip to main content
Log in

Degeneracy affected stability in ionospheric plasma waves

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Ionospheric plasma introduces nonlinear perturbations in regular EM wave propagation which in turn affects the signal transmission in a highly nonlinear manner. Often the signals are distorted by a varied degree of nonlinearity. The wireless communication mechanism is affected by small perturbations which take gigantic rogue wave structures with the possibility of damaging sophisticated equipments. To study the evolution of rogue wave-type solitons starting from initial small-amplitude perturbations, we have considered a three-component electron–ion plasma system with degeneracy pressure as well as quantum diffraction effects. A solitary wave structure is formed due to the interplay of nonlinear and dispersive forces. Such a formation under an external force gets modified and the stability criteria are altered. The interesting fact thus obtained here shows that relativistic and thermal degeneracy favour stability whereas quantum diffraction leads to instability. In this paper, we have studied how solitary wave structures behave under an external force. Next, we study how the nonlinear effects cause an amplitude modulation and the envelope soliton is formed. Such an envelope soliton is studied by the nonlinear Schrödinger equation that we derive in the later part of the work. We have carried out simulation studies and compared our results with the analytical findings of other workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. J Burch et al, J. Geophys. Res.: Space Phys. 123, 1118 (2018)

    Article  ADS  Google Scholar 

  2. E Marsch, K Mühlhäuser, R Schwenn, H Rosenbauer, W Pilipp and F Neubauer, J. Geophys. Res.: Space Phys. 87, 52 (1982)

    Article  ADS  Google Scholar 

  3. F Michel, Rev. Mod. Phys. 54, 1 (1982)

    Article  ADS  Google Scholar 

  4. F Michel, Theory of neutron star magnetospheres (University of Chicago Press, 1991)

  5. C Das, S Chandra, S Kapoor and P Chatterjee, IEEE Trans. Plasma Sci. 50, 1579 (2022)

    Article  ADS  Google Scholar 

  6. S Chandra, S Kapoor, D Nandi, C Das and D Bhattacharjee, IEEE Trans. Plasma Sci. 50, 1495 (2022)

    Article  ADS  Google Scholar 

  7. S Dey, S Ghosh, D Maity, A De and S Chandra, Pramana – J. Phys. 96, 213 (2022)

  8. J Goswami, S Chandra and B Ghosh, Astrophys. Space Sci. 364, 1 (2019)

    Article  MathSciNet  Google Scholar 

  9. A Majumdar, A Sen, B Panda, R Ghosh, S Mallick and S Chandra, The Afr. Rev. Phys. 15, 18 (2021)

    Google Scholar 

  10. A Mukhopadhyay, D Bagui and S Chandra, The Afr. Rev. Phys. 15, 25 (2021)

    Google Scholar 

  11. M Chatterjee, M Dasgupta, P Das, M Halder and S Chandra, The Afr. Rev. Phys. 15, 75 (2021)

    Google Scholar 

  12. S Ghosh, S Saha, T Chakraborty, K Sadhukhan, R Bhanja and S Chandra, The Afr. Rev. Phys. 15, 90 (2021)

    Google Scholar 

  13. A Misra and S Samanta, Phys. Rev. E 82, 037401 (2010)

  14. P Carlqvist, Astrophys. Space Sci. 87, 21 (1982)

    Article  ADS  Google Scholar 

  15. S Devanandhan, S Singh and G Lakhina, Phys. Scr. 84, 025507 (2011)

  16. S Devanandhan, S Singh, G Lakhina and R Bharuthram, Nonlinear Proc. Geophys. 18, 627 (2011)

    Article  ADS  Google Scholar 

  17. S Popel, S Vladimirov and P Shukla, Phys. Plasmas 2, 716 (1995)

    Article  ADS  Google Scholar 

  18. M Ghosh, K Sharry, D Dutta and S Chandra, The Afr. Rev. Phys. 15, 63 (2021)

    Google Scholar 

  19. P Samanta, A De, S Dey, D Maity, A Ghosh and S Chandra, The Afr. Rev. Phys. 15, 10 (2021)

    Google Scholar 

  20. J Goswami, S Chandra and B Ghosh, Laser Particle Beams 36, 136 (2018)

    Article  Google Scholar 

  21. A Ghosh, J Goswami, S Chandra, C Das, Y Arya and H Chhibber, IEEE Trans. Plasma Sci. 50, 1524 (2022)

    Article  ADS  Google Scholar 

  22. S Chandra, J Sarkar, C Das and B Ghosh, Plasma Phys Rep. 47, 306 (2021)

    Google Scholar 

  23. J Goswami, S Chandra, J Sarkar and B Ghosh, Radiat. Effects Defects Solids 175, 961 (2020)

    Article  ADS  Google Scholar 

  24. H Demiray, Phys. Plasmas 23, 032109 (2016)

    Article  ADS  Google Scholar 

  25. S Dey, D Maity, A Ghosh, P Samanta, A De and S Chandra, The Afr. Rev. Phys. 15, 33 (2021)

    Google Scholar 

  26. J Goswami, J Sarkar, S Chandra and B Ghosh, Pramana – J. Phys. 95, 54 (2021)

    Google Scholar 

  27. C Das, S Chandra and B Ghosh, Pramana – J. Phys. 95, 78 (2021)

    Google Scholar 

  28. H Pakzad, Phys. Lett. A 373, 847 (2009)

    Article  ADS  Google Scholar 

  29. A Eddington, Stellar movements and the structure of the Universe (Macmillan, 1914)

  30. A Eddington, The internal constitution of the stars (Cambridge University Press, 1988)

  31. S Fowler and E Guggenheim, Statistical thermodynamics. A version of statistical mechanics for students of physics and chemistry (Cambridge, 1939)

  32. S Chandrasekhar, Mon. Not. R. Astron. Soc. 95, 207 (1935)

    Article  ADS  Google Scholar 

  33. J Goswami, S Chandra, J Sarkar and B Ghosh, AIP Conf. Proc. 2319(1), 030005 (2021)

    Google Scholar 

  34. G Manna, S Dey, J Goswami, S Chandra, J Sarkar and A Gupta, IEEE Trans. Plasma Sci. 50, 1464 (2022)

    Article  ADS  Google Scholar 

  35. Shilpi Sharry, C Das and S Chandra, Springer Proceedings in Complexity (2022)

  36. J Sarkar, S Chandra, J Goswami and B Ghosh, Springer Proceedings in Complexity (2022)

  37. S Singla, S Chandra and N Saini, Chin. J. Phys. 85, 524 (2023)

    Article  Google Scholar 

  38. A Maiti, S Chowdhury, P Singha, S Ray, P Dasgupta and S Chandra, The Afr. Rev. Phys. 15, 97 (2021)

    Google Scholar 

  39. S Ballav, S Kundu, A Das and S Chandra, The Afr. Rev. Phys. 15, 54 (2021)

    Google Scholar 

  40. A Roychowdhury, S Banerjee and S Chandra, The Afr. Rev. Phys. 15, 102 (2021)

    Google Scholar 

  41. H Pakzad, Chaos Solitons Fractals 42, 874 (2009)

    Article  ADS  Google Scholar 

  42. A Mamun, R Cairns and P Shukla, Phys. Plasmas 3, 702 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  43. U Kumar Samanta, A Saha and P Chatterjee, Phys. Plasmas 20, 022111 (2013)

  44. T Ghosh, S Pramanick, S Sarkar, A Dey and S Chandra, The Afr. Rev. Phys. 15, 45 (2021)

    Google Scholar 

  45. D Bohm and D Pines, Phys. Rev. 92, 609 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  46. P Shukla and B Eliasson, Phys. Rev. Lett. 96, 245001 (2006)

    Article  ADS  Google Scholar 

  47. F Haas, L Garcia, J Goedert and G Manfredi, Phys. Plasmas 10, 10 (2003)

  48. F Haas, Quantum plasmas (Springer, 2011) p. 65

  49. F Haas, Quantum plasmas: An hydrodynamic approach (Springer Science, 2011)

  50. G Brodin and M Marklund, New J. Phys. 9, 277 (2007)

    Article  Google Scholar 

  51. M Bonitz, E Pehlke and T Schoof, Phys. Rev. E 87, 033105 (2013)

    Article  ADS  Google Scholar 

  52. G Manfredi, Fields Inst. Commun. 46, 263 (2005)

    Google Scholar 

  53. M Akbari-Moghanjoughi, J. Plasma Phys. 79 (2012)

  54. A Mamun, Contrib. Plasma Phys. 60, e201900080 (2020)

    Article  ADS  Google Scholar 

  55. A Misra and A Roy Chowdhury, Phys. Plasmas 13, 072305 (2006)

    Article  ADS  Google Scholar 

  56. S Chandra and B Ghosh, Indian J. Pure Appl. Phys. 51, 627 (2013)

    Google Scholar 

  57. H Sahoo, S Chandra and B Ghosh, The Afr. Rev. Phys. 10, 235 (2015)

    Google Scholar 

  58. A Singh and S Chandra, The Afr. Rev. Phys. 12, 84 (2017)

    Google Scholar 

  59. A Singh and S Chandra, Laser Particle Beams 35, 252 (2017)

    Article  Google Scholar 

  60. C Das, S Chandra and B Ghosh, Plasma Phys. Control. Fusion 63, 15011 (2020)

    Article  Google Scholar 

  61. C Das, S Chandra and B Ghosh, Contrib. Plasma Phys. 60, e202000028 (2020)

    Article  ADS  Google Scholar 

  62. J Goswami, S Chandra, J Sarkar, S Chaudhuri and B Ghosh, Laser Particle Beams 38, 25 (2020)

    Article  Google Scholar 

  63. I Vasko, O Agapitov, F Mozer, A Artemyev and D Jovanovic, Geophys. Res. Lett. 42, 2123 (2015)

    Article  ADS  Google Scholar 

  64. A Robinson, P Gibbon, M Zepf, S Kar, R Evans and C Bellei, Plasma Phys. Controlled Fusion 51, 024004 (2009)

    Article  ADS  Google Scholar 

  65. J Goswami, S Chandra, C Das and J Sarkar, IEEE Trans. Plasma Sci. 50, 1508 (2022)

    Article  ADS  Google Scholar 

  66. J Sarkar, S Chandra and B Ghosh, Z. Naturforsch. A 75, 819 (2020)

  67. J Sarkar, J Goswami, S Chandra and B Ghosh, Laser Particle Beams 35, 641 (2017)

    Article  Google Scholar 

  68. X Li, D Xiao and Z Zhang, New J. Phys 15, 023011 (2013)

    Article  ADS  Google Scholar 

  69. G Chabrier, The Astrophys. J. 414, 695 (1993)

    Article  ADS  Google Scholar 

  70. I Easson and C Pethick, The Astrophys. J. 227, 995 (1979)

    Article  ADS  Google Scholar 

  71. D Sharry Dutta, M Ghosh and S Chandra, IEEE Trans. Plasma Sci. 50, 1585 (2022)

  72. J Sarkar, S Chandra, J Goswami, C Das and B Ghosh, AIP Conf. Proc. 2319(1), 030006 (2021)

    Google Scholar 

  73. F Chardard, F Dias, H Nguyen and J Vanden-Broeck, J. Eng. Math. 70, 175 (2011)

    Article  Google Scholar 

  74. R Ali, A Saha and P Chatterjee, Phys. Plasmas 24, 122106 (2017)

    Article  ADS  Google Scholar 

  75. S Chandra, J Goswami, J Sarkar and C Das, J. Kor. Phys.Soc. 76, 469 (2020)

    Article  ADS  Google Scholar 

  76. S Ballav, A Das, S Pramanick and S Chandra, IEEE Trans. Plasma Sci. 50, 1488 (2022)

    Article  ADS  Google Scholar 

  77. A Das, P Ghosh, S Chandra and V Raj, IEEE Trans. Plasma Sci. 50, 1598 (2022)

  78. H Sahoo, C Das, S Chandra, B Ghosh and K Mondal, IEEE Trans. Plasma Sci. 50, 1610 (2022)

    Article  ADS  Google Scholar 

  79. S Thakur, C Das and S Chandra, IEEE Trans. Plasma Sci. 50, 1545 (2022)

    Article  ADS  Google Scholar 

  80. S Chandra, J Goswami, J Sarkar, C Das, B Ghosh and D Nandi, Indian J. Phys. 96, 3413 (2022)

    Google Scholar 

  81. S Sarkar, A Sett, S Pramanick, T Ghosh, C Das and S Chandra, IEEE Trans. Plasma Sci. 50, 1477 (2022)

    Article  ADS  Google Scholar 

  82. F Haas, G Manfredi and M Feix, Phys. Rev. E 62, 2763 (2000)

    Article  ADS  Google Scholar 

  83. A Dey, S Chandra, C Das, S Mandal and T Das, IEEE Trans. Plasma Sci. 50, 1557 (2022)

    Article  ADS  Google Scholar 

  84. J Sarkar, S Chandra, A Dey, C Das, A Marick and P Chatterjee, IEEE Trans. Plasma Sci. 50, 1565 (2022)

    Article  ADS  Google Scholar 

  85. S Chandrasekhar, Mon. Not. R. Astron. Soc. 95, 207 (1935)

    Article  ADS  Google Scholar 

  86. S Chandra, R Banerjee, J Sarkar, S Zaman, C Das, S Samanta, F Deeba and B Dasgupta, J. Astrophys. Astron. 43 (2022)

  87. S Chandra and B Ghosh, Astrophys. Space Sci. 342, 417 (2012)

    Article  ADS  Google Scholar 

  88. S Chandra, S Paul and B Ghosh, Astrophys. Space Sci. 343, 213 (2013)

    Article  ADS  Google Scholar 

  89. P Yu, Y Liu, J Cao, J Lei, Z Zhang and X Zhang, AIP Adv. 7, 105114 (2017)

    Article  ADS  Google Scholar 

  90. M Mendillo, J Baumgardner, D Allen, J Foster, J Holt, G Ellis, A Klekociuk and G Reber, Science 238(4831), 1260 (27)

  91. A Sen, G Ganguli and C Crabtree, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC). p. 1 (2019)

  92. T Robinson, Plasma Phys. Control. Fusion 30, 45 (1988)

  93. R Benson, Radio Sci. 12, 861 (1977)

    Article  ADS  Google Scholar 

  94. N Kotsarenko, R Enríquez and S Koshevaya, Astrophys. Space Sci. 246, 211 (1996)

  95. V Puchkov, Phys. Scr. 78, 065504 (2008)

  96. J Sikta, N Chowdhury, A Mannan, S Sultana and A Mamun, Plasma 4, 230 (2021)

    Article  Google Scholar 

  97. E Yiǧit, Atmospheric and space sciences: Ionospheres and plasma environments (Springer, 2018) Vol. 2, pp. 67–102

  98. S Grach, Radiophys. Quantum Electron. 28, 470 (1985)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Institute of Natural Sciences and Applied Technology, the Physics Department of Government General Degree College at Kushmandi for providing facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarniv Chandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, S., Das, C., Sarkar, J. et al. Degeneracy affected stability in ionospheric plasma waves. Pramana - J Phys 98, 2 (2024). https://doi.org/10.1007/s12043-023-02687-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02687-x

Keywords

PACS Nos

Navigation