Skip to main content
Log in

Modulating the optical behaviour of metallic vanadium dioxide by adjusting the number of Drude oscillators

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This study investigates and compares the effect of the number of Drude oscillators on the optical response of vanadium dioxide (\(\hbox {VO}_{2}\)). Its optical constants undergo a rapid transition from the semiconductor state to the metallic state at a critical temperature of 68\(^\circ \)C, making it an intelligent and functional material. \(\hbox {VO}_{2}\) becomes metallic at temperatures above 68\(^\circ \)C and crystallises in a tetragonal rutile structure. Using the dielectric function \(\varepsilon \), which describes the optical behaviour of this material, we simulated the optical constants T, R, n, k, \(\alpha \) and CoeffA of a thin layer of \(\hbox {VO}_{2}\) in the metallic state as a function of the incident photon energy, ranging from infrared (IR) to ultraviolet (UV). The effect of oscillators number was clearly relevant to the evolution of the optical properties of this material, as well as its optical conductivity, which is primarily associated with the field of optoelectronics. These results suggest that various nanotechnological applications, such as IR or UV detectors, \(\hbox {VO}_{2\ }\)nanocrystal-based paints or smart windows in buildings, could be controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K M Niang, G Bai, H Lu and J Robertson, Appl. Phys. Lett. 118, 121901 (2021)

    Article  ADS  Google Scholar 

  2. S Biswas, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 92, 117 (2022)

    Article  Google Scholar 

  3. D Xiao, K W Kim and J M Zavada, J. Appl. Phys. 101, 113105 (2007)

    Article  ADS  Google Scholar 

  4. W Jiang, T Zheng, B Wu, H Jiao, X Wang, Y Chen, X Zhang, M Peng, H Wang, T Lin, H Shen, J Ge, W Hu, X Xu, X Meng, J Chu and J Wang, Light Sci. Appl. 9, 160 (2020)

    Article  ADS  Google Scholar 

  5. S Kabir, S Nirantar, L Zhu, C Ton-That, S K Jain, A B A Kayani, B J Murdoch, S Sriram, S Walia and M Bhaskaran, Appl. Mater. Today 21, 100833 (2020)

    Article  Google Scholar 

  6. N Vardi, E Anouchi, T Yamin, S Middey, M Kareev, J Chakhalian, Y Dubi and A Sharoni, Adv. Mater. 29, 1605029 (2017)

    Article  Google Scholar 

  7. M Zouini, A B Chaib, A Mdaa and E M el Khattabi, J. Eng. Sci. Technol. Rev. 11, 26 (2018)

    Article  Google Scholar 

  8. C C Marques, Application of vanadium oxide nanoparticles in smart surfaces, Doctoral dissertation (2018) pp. 24–28

  9. M Ferrara and M Bengisu, Materials that change color in: Springer briefs in applied sciences and technology (Springer, 2014) pp. 9–60

  10. Y Zhang, W Xiong, W Chen and Y Zheng, Nanomaterials 11, 338 (2021)

  11. R J O Mossanek and M Abbate, J. Phys. Condens. Matter 19, 346225 (2007)

    Article  Google Scholar 

  12. H W Verleur, A S Barker and C N Berglund, Phys. Rev. 172, 788 (1968)

    Article  ADS  Google Scholar 

  13. H Kakiuchida, P Jin, S Nakao and M Tazawa, Jpn. J. Appl. Phys. 46, 116 (2007)

    Article  Google Scholar 

  14. J B Kana Kana, G Vignaud, A Gibaud and M Maaza, Opt. Mater. 54, 165 (2016)

    Article  ADS  Google Scholar 

  15. A B Chaib, M Zouini and A Tahiri, Opt. Mater. 133, 112895 (2022)

    Article  Google Scholar 

  16. J Lappalainen, S Heinilehto, H Jantunen and V Lantto, J. Electroceram. 22, 73 (2008)

    Article  Google Scholar 

  17. A Cavalleri, T Dekorsy, H H W Chong, J C Kieffer and R W Schoenlein, Phys. Rev. B 70, 161102 (2004)

    Article  ADS  Google Scholar 

  18. V Eyert, Ann. Phys. 11, 650 (2002)

    Article  Google Scholar 

  19. S Paradis, P Mérel, P Laou and D Alain, Doped vanadium dioxide with enhanced infrared modulation, Technical Memorandum DRDC-VALCARTIER-TM-2007-002 (2007)

  20. G Andersson, J Paju, W Lang and W Berndt, Acta Chem. Scandinavica 8, 1599 (1954)

    Google Scholar 

  21. K Dai, J Lian, M J Miller, J Wang, Y Shi, Y Liu, H Song and X Wang, Opt. Mater. Express 9, 663 (2019)

    Article  ADS  Google Scholar 

  22. M Currie, M A Mastro and V D Wheeler, Opt. Mater. Express 7, 1697 (2017)

    Article  ADS  Google Scholar 

  23. M Tazawa, H Asada, G Xu, P Jin and K Yoshimura, MRS Proc. 785, 105 (2003)

    Article  Google Scholar 

  24. N R Mlyuka, G A Niklasson and C G Granqvist, Phys. Status Solidi A 206, 2155 (2009)

    Article  ADS  Google Scholar 

  25. J B Kana Kana, J M Ndjaka, G Vignaud, A Gibaud and M Maaza, Opt. Commun. 284, 807 (2011)

  26. A Joushaghani, Micro- and nano-scale optoelectronic devices using vanadium dioxide, Thesis (University of Toronto, 2014)

  27. C Batista, R M Ribeiro and V Teixeira, Nanoscale Res. Lett. 6, 301 (2011)

    Article  ADS  Google Scholar 

  28. M Zouini, A Ben Chaib, A Mdaa and A Tahiri, Mater. Res. Express 6, 125906 (2019)

    Article  ADS  Google Scholar 

  29. N Smith, Phys. Rev. B 64, 155106 (2001)

    Article  ADS  Google Scholar 

  30. P J Burke, I B Spielman, J P Eisenstein, L N Pfeiffer and K W West, Appl. Phys. Lett. 76, 745 (2000)

    Article  ADS  Google Scholar 

  31. M Mao, Y Liang, R Liang, L Zhao, N Xu, J Guo, F Wang, H Meng, H Liu and Z Wei, Nanomaterials 9, 1101 (2019)

    Article  Google Scholar 

  32. B Rajeswaran, J K Pradhan, S Anantha Ramakrishna and A M Umarji, J. Appl. Phys. 122, 163107 (2017)

  33. A Gentle, A I Maaroof and G B Smith, Nanotechnology 18, 025202 (2006)

  34. C Petit and J M Frigerio, Proc. SPIE 3738, 102 (1999)

    Article  ADS  Google Scholar 

  35. N Numan, B Mabakachaba, A Simo, Z Nuru and M Maaza, J. Opt. Soc. Am. A 37, C45 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was completed at the Ecole Normale Supérieur ENS of Fez. University Sidi Mohamed Ben Abdellah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Ben Chaib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Chaib, A., Zouini, M. Modulating the optical behaviour of metallic vanadium dioxide by adjusting the number of Drude oscillators. Pramana - J Phys 97, 201 (2023). https://doi.org/10.1007/s12043-023-02685-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02685-z

Keywords

PACS

Navigation