Skip to main content
Log in

Schwarzian derivative in higher-order Riccati equations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The Sturm–Liouville equation represents the linearised form of the first-order Riccati equation. This provides an evidence for the connection between Schwarzian derivative and this first-order nonlinear differential equation. Similar connection is not obvious for higher-order equations in the Riccati chain because the corresponding linear equations are of order greater than two. With special attention to the second- and third-order Riccati equations we demonstrate that Schwarzian derivative has a natural space in higher Riccati equations. There exist higher-order analogues of the Schwarzian derivative. We demonstrate that equations in the Riccati hierarchy are embedded in these higher-order derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W T Reid, Riccati differential equations (Mathematics in science and engineering) (Academic Press, New York, 1972)

    Google Scholar 

  2. E L Ince, Ordinary differential equations (Dover Publications, New York, 1976)

    Google Scholar 

  3. F Calogero, Variable phase approach to potential scattering (Academic Press, New York, 1967)

    MATH  Google Scholar 

  4. P K Bera, T K Nandi and B Talukdar, J. Phys. A: Math. Gen. 26, L1073 (1993)

    Article  ADS  Google Scholar 

  5. J F Cariñena and J de Lucas, J. Nonlinear Math. Phys. 18, 29 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  6. J D Cole, Q. J. Appl. Math. 9, 225 (1951)

    Article  Google Scholar 

  7. E Hopf, Commun. Pure Appl. Math. 3, 201 (1950)

    Article  Google Scholar 

  8. J Harnad, P Winternitz and R L Anderson, J. Math. Phys. 24, 1062 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  9. J F Cariñena, P Guha and M F Rañada, J. Phys.: Conf. Ser. 175, 012009 (2009)

    Google Scholar 

  10. A M Grundland and J de Lucas, J. Differ. Equ. 263, 299 (2017)

    Article  ADS  Google Scholar 

  11. C Muriel and M C Nucci, Open Commun. Nonlinear Math. Phys. 1, 41 (2021)

    Article  Google Scholar 

  12. R Gladwin Pradeep, V K Chandrasekar, M Senthilvelan and M Lakshmanan, J. Math. Phys. 51, 103513 (2010)

  13. R Gladwin Pradeep, V K Chandrasekar, R Mohanasubha, M Senthilvelan and M Lakshmanan, Commun. Nonlinear Sci. Numer. Simul. 36, 303 (2016)

  14. R Mohanasubha, V K Chandrasekar, M Senthilvelan and M Lakshmanan, Pramana – J. Phys. 97, 30 (2023)

  15. M J Ablowitz and A S Fokas, Complex variables: Introduction and applications (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  16. V Ovsienko and S Tabachnikov, Not. AMS 56, 34 (2009)

    Google Scholar 

  17. W de Melo and S van Strien, Bull. Am. Math. Soc. 18, 159 (1988)

    Article  Google Scholar 

  18. K Carne, J. Reine Angew. Math. 408, 10 (1990)

    MathSciNet  Google Scholar 

  19. P J Olver, Applications of Lie groups to differential equations (Springer, New York, 1993)

    Book  MATH  Google Scholar 

  20. A M Grundland and D Levi, J. Phys. A: Math. Gen. 32, 3931 (1999)

    Article  ADS  Google Scholar 

  21. E Schippers, Proc. Am. Math. Soc. 128, 3241 (2000)

    Article  Google Scholar 

  22. A Galajinsky, Nucl. Phys. B 936, 661 (2018)

    Article  ADS  Google Scholar 

  23. K Löwner, Math. Ann. 89, 103 (1923)

    Article  MathSciNet  Google Scholar 

  24. D Aharonov, Duke Math. J. 36, 599 (1969)

    Article  MathSciNet  Google Scholar 

  25. H Tamanoi, Math. Ann. 305, 127 (1996)

    Article  MathSciNet  Google Scholar 

  26. W J Kim, Pac. J. Math. 31, 717 (1969)

    Article  Google Scholar 

  27. P L Sachdev, J. Appl. Math. Phys. (ZAMP) 29, 963 (1978)

    Article  Google Scholar 

  28. B M Vaganan and E E Priya, Pramana – J. Phys. 85, 861 (2015)

  29. P Miskinis, SIGMA 9, 016 (2013)

    Google Scholar 

Download references

Acknowledgements

One of the authors (GAS) would like to acknowledge funding from the Science and Engineering Research Board, Govt. of India through Grant No. CRG/2019/000737.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Golam Ali Sekh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukdar, B., Chatterjee, S. & Sekh, G.A. Schwarzian derivative in higher-order Riccati equations. Pramana - J Phys 97, 187 (2023). https://doi.org/10.1007/s12043-023-02681-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02681-3

Keywords

PACS Nos

Navigation