Skip to main content
Log in

The effect of negative mass in gravitating systems

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The effect of the negative effective mass emerging in the gravitating core-spring-shell system is considered. The effect appears when the entire system is exerted on the external harmonic force and the frequency of external force approaches the critical frequency \({\omega }_{0}\) from above. The critical frequency \({\omega }_{0}\) depends on the density of the self-gravitating system only. The scaling law predicting the value of \({\omega }_{0}\) for condensed phases is derived as \({\omega }_{0}={A}^{\frac{1}{5}}\widetilde{\omega },\) where A is the atomic weight and \(\widetilde{\omega }\) is the fundamental frequency. The characteristic fundamental time scale corresponding to this frequency is close to the typical lifetime scale of the trapped atoms of antihydrogen. The generalisation of the effect for the Coulomb-like forces is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

References

  1. G W Milton and J R Willis, Proc. R. Soc. A 463, 855 (2007)

    Article  ADS  Google Scholar 

  2. H Bondi, Rev. Mod. Phys. 29, 423 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  3. W B Bonnor, Gen. Relat. Gravit. 21, 143 (1989)

    Article  Google Scholar 

  4. G Manfredi, J L Rouet, B Miller and G Chardin, Phys. Rev. D 98, 023514 (2018)

    Article  ADS  Google Scholar 

  5. S Nájera, A Gamboa, A Aguilar-Nieto and C Escamilla-Rivera, Astron. Astrophys. 651, L13 (2021)

    Article  ADS  Google Scholar 

  6. V Veselý and M Žofka, Phys. Rev. D 104, 104033 (2021)

    Article  ADS  Google Scholar 

  7. H Socas-Navarro, Astron. Astrophys. 626, A5 (2019)

    Article  ADS  Google Scholar 

  8. H H Huang, C N Sun and G L Huang, Int. J. Eng. Sci. 47, 610 (2009)

    Article  Google Scholar 

  9. C T Chan, J Li and K H Fung, JZUS A 7, 24 (2006)

    Article  Google Scholar 

  10. P Sarathi and N K Pathak, J. Phys. Commun. 5, 065006 (2021)

    Article  Google Scholar 

  11. X N Liu, G K Hu, G L Huang and C T Sun, Appl. Phys. Lett. 98, 251907 (2011)

    Article  ADS  Google Scholar 

  12. S Sang, A Mhannawee and Z Wang, Acta Mech. 230, 1003 (2019)

  13. M Jaberzadeh, B Li and K T Tan, Wave Motion 89, 131 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Z H He, Y Z Wang and Y S Wang, Int. J. Mech. Sci. 195, 106221 (2021)

    Article  Google Scholar 

  15. C Ding, Y Dong, Y Wang, J Shi, S Zhai and X Zhao, J. Phys. D: Appl. Phys. 55, 253002 (2022)

    Article  ADS  Google Scholar 

  16. F Liu, Z Wang, M Ke and Z Liu, Phys. Rev. Lett. 125, 185502 (2020)

    Article  ADS  Google Scholar 

  17. J Lončar, B Igrec and D Babić, Symmetry, 14(3), 529 (2022)

    Article  ADS  Google Scholar 

  18. G Hong, J Li, J Dong, Y Ning and J Pan, Int. J. Mech. Sci. 209, 106706 (2021)

    Article  Google Scholar 

  19. E Bormashenko and I Legchenkova, Materials 13(8), 1890 (2020)

    Article  ADS  Google Scholar 

  20. E Bormashenko, I Legchenkova and M Frenkel, Materials 13(16), 3512 (2020)

    Article  ADS  Google Scholar 

  21. S Banerjee and B Ghosh, Pramana – J. Phys. 90, 42 (2018)

  22. G B Arfken and H J Weber, Mathematical methods for physicists, 5th Edn (Academic Press, San Diego, USA, 2001)

    MATH  Google Scholar 

  23. P G Roll, R Krotkov and R H Dicke, Ann. Phys. 26, 442 (1964)

    Article  ADS  Google Scholar 

  24. H Ohanian, Am. J. Phys. 45, 903 (1977)

    Article  ADS  Google Scholar 

  25. V F Weisskopf, Am. J. Phys. 187 (4177), 605 (1975)

    Google Scholar 

  26. The ALPHA Collaboration. Nature Phys. 7, 558 (2011)

    Article  ADS  Google Scholar 

  27. M Charlton and D P van der Werf, Sci. Prog. 98 (1), 34 (2015)

    Article  Google Scholar 

  28. X Hernandez, Entropy 14, 848 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Bormashenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bormashenko, E. The effect of negative mass in gravitating systems. Pramana - J Phys 97, 199 (2023). https://doi.org/10.1007/s12043-023-02677-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02677-z

Keywords

PACS NOs

Navigation