Skip to main content
Log in

Transverse effective charge, energy band structure and optical properties of nanostructured AlxIn1-xPySbzAs1-y-z alloy for the solar cells system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The energy band gaps (EgL, EgΓ and EgX) and electronic band structure in the pentanary AlxIn1-xPySbzAs1-y-z semiconducting alloy are determined. Additionally, the Fröhlich coupling parameter, the phonon frequencies (ωLO, ωTO), transverse effective charge (eT*), high-frequency dielectric constant (ε), static dielectric constant (ε0) and refractive index (n) are calculated. A combination of the virtual crystal approximation and the empirical pseudopotential approach is used in our study. The calculations are done at room temperature and normal pressure. The studied properties for the new alloy under investigation lattice-matched to the InP substrate give a good agreement with the experiment. It is discovered that materials with lower coupling constants are advantageous for a parametric interaction to be cost-effective. It is expected that this paper's findings will apply to a wide range of industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. I Tavakkolnia, L K Jagadamma, R Bian, P P Manousiadis, S Videv, G A Turnbull, I D W Samuel and H Haas, Light Sci. Appl. 10, 1 (2021)

    Article  Google Scholar 

  2. J Gong, J Liang and K Sumathy, Renew. Sustain. Energy Rev. 16, 5848 (2012)

    Article  Google Scholar 

  3. A R Degheidy and E B Elkenany, Semiconductors 45, 1251 (2011)

    Article  ADS  Google Scholar 

  4. W Wang and L Qi, Adv. Funct. Mater. 29, 1807275 (2019)

    Article  Google Scholar 

  5. H Nguyen, S Arafin, J Piao and T V Cuong, J. Nanomater. 2016, 055002 (2016)

    Google Scholar 

  6. A M Elabsy, A R Degheidy, H G Abdelwahed and E B Elkenany, Phys. B Condens. Matter 405, 3709 (2010)

    Article  ADS  Google Scholar 

  7. N Pradhan, S Das Adhikari, A Nag and D D Sarma, Angew. Chem. Int. Ed. 56, 7038 (2017)

    Article  Google Scholar 

  8. Aj Minnich, M S Dresselhaus, Z F Ren and G Chen, Energy Environ. Sci. 2, 466 (2009)

    Article  Google Scholar 

  9. W Zeng, L Shu, Q Li, S Chen, F Wang and X Tao, Adv. Mater. 26, 5310 (2014)

    Article  Google Scholar 

  10. V O Özçelik, J G Azadani, C Yang, S J Koester and T Low, Phys. Rev. B 94, 35125 (2016)

    Article  ADS  Google Scholar 

  11. J He and T M Tritt, Science 357(6358), eaak9997 (2017)

    Article  Google Scholar 

  12. A R Degheidy and E B Elkenany, Chin. Phys. B 21, 126101 (2012)

    Article  ADS  Google Scholar 

  13. S Niu, Z Wei, X Fang, D Wang, X Wang, X Gao and R Chen, Crystals 7, 337 (2017)

    Article  Google Scholar 

  14. N Bouarissa, H Baaziz and Z Charifi, Phys. Status Solidi Basic Res. 231, 403 (2002)

    Article  ADS  Google Scholar 

  15. A R Degheidy and E B Elkenany, Thin Solid Films 599, 113 (2016)

    Article  ADS  Google Scholar 

  16. S Hwang, D Kim, H Tao, T Kim, S Kim, K J Yu, B Panilaitis, J Jeong, J Song and F G Omenetto, Adv. Funct. Mater. 23, 4087 (2013)

    Article  Google Scholar 

  17. J L Shay and J H Wernick, Ternary chalcopyrite semiconductors: Growth, electronic properties and applications: In: International series of monographs in the science of the solid state (Elsevier, 2017)

  18. C Mattevi, G Eda, S Agnoli, S Miller, K A Mkhoyan, O Celik, D Mastrogiovanni, G Granozzi, E Garfunkel and M Chhowalla, Adv. Funct. Mater. 19, 2577 (2009)

    Article  Google Scholar 

  19. A R Degheidy, A M AbuAli and E B Elkenany, Appl. Phys. A: Mater. Sci. Process. 127, 1 (2021)

    Article  Google Scholar 

  20. T F Kuech, Prog. Cryst. Growth Charact. Mater. 62, 352 (2016)

    Article  Google Scholar 

  21. K T Butler, J M Frost, J M Skelton, K L Svane and A Walsh, Chem. Soc. Rev. 45, 6138 (2016)

    Article  Google Scholar 

  22. E B Elkenany, Phys. Scr. 96, 95701 (2021)

    Article  Google Scholar 

  23. H Okuyama, Y Kishita and A Ishibashi, Phys. Rev. B 57, 2257 (1998)

    Article  ADS  Google Scholar 

  24. A R Degheidy and E B Elkenany, Chin. Phys. B 24, 94302 (2015)

    Article  Google Scholar 

  25. A Krier, V M Smirnov, P J Batty, M Yin, K T Lai, S Rybchenko, S K Haywood, V I Vasil’ev, G S Gagis and V I Kuchinskii, Appl. Phys. Lett. 91, 82102 (2007)

    Article  Google Scholar 

  26. S Adachi, J. Appl. Phys. 53, 8775 (1982)

    Article  ADS  Google Scholar 

  27. S Adachi, J. Appl. Phys. 53, 5863 (1982)

    Article  ADS  Google Scholar 

  28. C K Williams, T H Glisson, J R Hauser and M A Littlejohn, J. Electron. Mater. 7, 639 (1978)

    Article  ADS  Google Scholar 

  29. P Harrison, Quantum wells wires and Quantum dots (Univ. Leeds, UK, 2005)

  30. R N Cahn and M L Cohen, Phys. Rev. B 1, 2569 (1970)

    Article  ADS  Google Scholar 

  31. J P Walter and M L Cohen, Phys. Rev. 183, 763 (1969)

    Article  ADS  Google Scholar 

  32. S Wang, J Xiong, D Li, Q Zeng, M Xiong and X Chai, Mater. Lett. 282, 128754 (2021)

    Article  Google Scholar 

  33. E B Elkenany, Phys. Scr. 96, 105701 (2021)

    Article  ADS  Google Scholar 

  34. S Adachi, Properties of group-iv, III-v and II-VI semiconductors (John Wiley & Sons, 2005)

    Book  Google Scholar 

  35. L Vegard, Z. Phys. 5, 17 (1921)

    Article  ADS  Google Scholar 

  36. Y Harrache and N Bouarissa, Solid State Commun. 295, 26 (2019)

    Article  ADS  Google Scholar 

  37. S Zerroug, A Gueddim, M A Khan and N Bouarissa, Superlatt. Microstruct. 53, 155 (2013)

    Article  ADS  Google Scholar 

  38. Y Nabetani, T Okuno, K Aoki, T Kato, T Matsumoto and T Hirai, Phys. Status Solidi 203, 2653 (2006)

    Article  ADS  Google Scholar 

  39. N Bouarissa, Mod. Phys. Lett. B 16, 275 (2002)

    Article  ADS  Google Scholar 

  40. M Laradji, D P Landau and B Dünweg, Phys. Rev. B 51, 4894 (1995)

    Article  ADS  Google Scholar 

  41. B Jobst, D Hommel, U Lunz, T Gerhard and G Landwehr, Appl. Phys. Lett. 69, 97 (1996)

    Article  ADS  Google Scholar 

  42. S Y Davydov and S K Tikhonov, Semiconductors 32, 947 (1998)

    Article  ADS  Google Scholar 

  43. C Kittel, P McEuen and P McEuen, Introduction to solid state physics (Wiley, New York, 1976)

    Google Scholar 

  44. P Herve and L K J Vandamme, Infrared Phys. Technol. 35, 609 (1994)

    Article  ADS  Google Scholar 

  45. G A Samara, Phys. Rev. B 27, 3494 (1983)

    Article  ADS  Google Scholar 

  46. P Vogl, J. Phys. C: Solid State Phys. 11, 251 (1978)

    Article  ADS  Google Scholar 

  47. H Baaziz, Z Charifi and N Bouarissa, Mater. Chem. Phys. 68, 197 (2001)

    Article  Google Scholar 

  48. A R Degheidy, E B Elkenany and O A Alfrnwani, Silicon 9, 183 (2017)

    Article  Google Scholar 

  49. J R Chelikowsky, T J Wagener, J H Weaver and A Jin, Phys. Rev. B 40, 9644 (1989)

    Article  ADS  Google Scholar 

  50. S Mokkapati and C Jagadish, Mater. Today 12, 22 (2009)

    Article  Google Scholar 

  51. T S Moss, Phys. Status Solidi 131, 415 (1985)

    Article  Google Scholar 

  52. N M Ravindra, S Auluck and V K Srivastava, Phys. Status Solidi 93, K155 (1979)

    Article  ADS  Google Scholar 

  53. N Bouarissa, S Bougouffa and A Kamli, Semicond. Sci. Technol. 20, 265 (2005)

    Article  ADS  Google Scholar 

  54. L Xu, X Li, Y Chen and F Xu, Appl. Surf. Sci. 257, 4031 (2011)

    Article  ADS  Google Scholar 

  55. K C Kao, Dielectric phenomena in solids (Elsevier, 2004)

  56. W A Harrison and S Ciraci, Phys. Rev. B 10, 1516 (1974)

    Article  ADS  Google Scholar 

  57. C Kittel and P McEuen, Introduction to solid state physics (John Wiley & Sons, 2018)

  58. N Bouarissa, Phys. Lett. A 245, 285 (1998)

    Article  ADS  Google Scholar 

  59. S Dubey, A Paliwal and S Ghosh, Frohlich interaction in compound semiconductors: A comparative study (Trans Tech Publications, 2016) p. 44

    Google Scholar 

Download references

Funding

Open access funding is provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elkenany B Elkenany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alyami, M., Alfrnwani, O.A. & Elkenany, E.B. Transverse effective charge, energy band structure and optical properties of nanostructured AlxIn1-xPySbzAs1-y-z alloy for the solar cells system. Pramana - J Phys 97, 194 (2023). https://doi.org/10.1007/s12043-023-02670-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02670-6

Keywords

PACS Nos

Navigation