Skip to main content
Log in

Gravastars in \(f(R,\,\Sigma ,\,T)\) strong-gravity and antigravity theories

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The aim of this manuscript is to investigate the gravastar model using the \(f(R,\,\Sigma ,\,T)\) strong-gravity and anti-gravity theories, which is posited as a substitute for black holes. The gravastar consists of three regions: the interior, intermediate shell and exterior regions. Inside the interior region, the pressure is equal to the negative density, creating a repulsive force across the thin spherical shell. This shell comprises ultra-relativistic plasma fluids. The Zel'dovich conjecture assumes that the pressure is proportional to the matter–energy density, counterbalancing the repulsive force from the interior region. The exterior region is completely vacuumed and can be defined using a generalised form of the Schwarzschild solution. By applying these specifications, we arrive at numerous precise and singularity-free solutions for the gravastar. These solutions possess several physically valid features within an alternative gravity framework, specifically \(f(R,\,\Sigma ,\,T)\) strong-gravity and anti-gravity. The gravitational Lagrangian is derived from an arbitrary function of the torsion scalar \(\Sigma\) and the trace of the energy–momentum tensor \(T\). In light of \(f(R,\,\Sigma ,\,T)\) recent developments, we can now provide insight into the inner region of the gravastar by considering the interplay between gravity, strong gravity and antigravity forces, which arise from the torsion effect. This approach allows us to analyse important properties that characterise the shell region, such as the proper length, energy content and entropy. Furthermore, the junction, energy and boundary conditions necessary for the production of the thin shell are also discussed in detail. The analysis reveals that the matter density and pressure in the interior region remain constant, while the ultra-relativistic fluid within the shell is denser at the outer boundary than in the inner one. Additionally, the proper length of the shell gradually increases from the interior junction to the exterior junction. Overall, these findings shed light on the mechanisms that govern the behaviour of the gravastar and provide valuable insights into the fundamental principles that govern gravitation and its effects on the Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. A Einstein, Die Feldgleichungen der Gravitation (Sitzungsberichte der Preussischen Akademie der Wissenschaften, Berlin, 1915)

    MATH  Google Scholar 

  2. K Schwarzschild, Uber das Gravitationsfeld eines Massenpunktes nach der Einstein'schen Theorie (Sitzungsberichte, Berlin, 1916) Vol. 18

  3. M Carmeli, Classical fields: General relativity and gauge theory (John Wiley & Sons, New York, 1982) pp. 168–171

    MATH  Google Scholar 

  4. J N Islam, Rotating fields in general relativity (Cambridge and New York, 1985)

  5. E Mottola, arXiv preprint arXiv:1008.5006 (2010)

  6. P O Mazur and E Mottola, Class. Quant. Grav32(21), 215024 (2015)

    Article  ADS  Google Scholar 

  7. P Mazur and E Mottola, arXiv:gr-qc/0109035v5, Report number: LA-UR-01–5067 (2001)

  8. P Mazur and E Mottola, Proc. Natl. Acad. Sci. USA 101, 9545 (2004)

    Article  ADS  Google Scholar 

  9. M Visser and D L Wiltshire, Class. Quant. Grav. 21, 1135 (2004)

    Article  ADS  Google Scholar 

  10. Z Yousaf et al, Phys. Rev. D 100, 024062 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. B M N Carter, Class. Quant. Grav. 22(21), 4551 (2005)

    Article  ADS  Google Scholar 

  12. A DeBenedictis et al, Class. Quant. Grav23, 2303 (2006)

    Article  ADS  Google Scholar 

  13. M A Abramowicz, W Kluzniak and J P Lasota, Astron. Astrophys. 396, 31 (2002)

    Article  Google Scholar 

  14. C B Chirenti and L Rezzolla, Class. Quant. Grav24(16), 4191 (2007)

    Article  ADS  Google Scholar 

  15. R S De Souza and O Reuven, Phys. Lett. B 705, 292(2011)

    Article  ADS  Google Scholar 

  16. A Das, S Ghosh, D Deb, F Rahaman and S Ray, Nucl. Phys. B 954, 114986 (2020)

    Article  Google Scholar 

  17. A Das, S Ghosh, B K Guha, S Das, F Rahaman and S Ray, Phys. Rev. D 95(12), 124011 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. S Ghosh, A D Kanfon, A Das, M J S Houndjo, I G Salako and S Ray, Int. J. Mod. Phys. A 35(04), 2050017 (2020)

    Article  ADS  Google Scholar 

  19. S Ray, R Sengupta and H Nimesh, Int. J. Mod. Phys. D 29(05), 2030004 (2020)

    Article  ADS  Google Scholar 

  20. M Z Bhatti, Z Yousaf and T Ashraf, Chin. J. Phys. 73, 167 (2021)

    Article  Google Scholar 

  21. K Majeed, G Abbas and A Siddiqa, New Astron95, 101802 (2022)

    Article  Google Scholar 

  22. C Cattoen, F Tristan and V Matt, Class. Quant. Grav. 22(20), 4189 (2005)

    Article  ADS  Google Scholar 

  23. N Bilić, G B Tupper and R D Viollier, J. Cosmol. Astropart. Phys. 2006(2), 013 (2006)

  24. F S N Lobo and V B A Aaron, Class. Quant. Grav. 24, 1069 (2007)

    Article  ADS  Google Scholar 

  25. D Horvat, S Ilijić and A Marunovic, Class. Quant. Grav26, 025003 (2008)

    Article  ADS  Google Scholar 

  26. K K Nandi et al, Phys. Rev. D 79, 024011 (2009)

    Article  ADS  Google Scholar 

  27. B V Turimov, B J Ahmedov and A A Abdujabbarov, Mod. Phys. Lett. A 24, 733 (2009)

    Article  ADS  Google Scholar 

  28. F S N Lobo and R Garattini, J. High Energy Phys12, 1 (2013)

    Google Scholar 

  29. P Bhar, Astrophys. Space Sci354, 457 (2014)

    Article  ADS  Google Scholar 

  30. P de Bernardis et al, Nature 404, 955 (2000)

    Article  ADS  Google Scholar 

  31. S Hanany et al, The Astrophys. J. 545, 1 (2000)

  32. P J E Peebles and B Ratra, Rev. Mod. Phys75, 559 (2003)

    Article  ADS  Google Scholar 

  33. T Padmanabhan, Phys. Rep. 380(5–6), 235 (2003)

  34. T Clifton et alPhys. Rep. 513, 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  35. F I Mikhail and M I Wanas, Proc. R. Soc. London. A. Math. Phys. Sci356, 471 (1977)

    ADS  Google Scholar 

  36. F I Mikhail, Ain Shams. Sci. Bull. 6, 24 (1962)

    Google Scholar 

  37. M I Wanas, Astrophys. Space Sci258, 237 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  38. M I Wanas, Astrophys. Space Sci. 154, 165 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  39. M I Wanas, Int. J. Geo. Meth. Mod. Phys. 4, 373 (2007)

    Article  Google Scholar 

  40. M I Wanas and M A Bakry, Int. J. Mod. Phys. A 24(27), 5025 (2009)

    Article  ADS  Google Scholar 

  41. M I Wanas, N L Youssef, W El Hanafy and S N Osman, Adv. Math. Phys. 2016, 20 (2016)

  42. M A Bakry and A T Shafeek, Grav. Cosmol. 27(1), 89 (2021)

    Article  ADS  Google Scholar 

  43. M I Wanas, Adv. High Energy Phys. 2012, 752613 (2012)

  44. M A Bakry and S K Ibraheem, Grav. Cosmol. 29(1), 19 (2023)

    Article  ADS  Google Scholar 

  45. C Brans and H D Robert, Phys. Rev. 124(3), 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  46. J Santos et alPhys. Rev. D 76, 083513 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  47. T Harko et al, Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  48. B J Carr, Astrophys. J. 201, 1 (1975)

    Article  ADS  Google Scholar 

  49. M S Madsen et alPhys. Rev. D 46, 1399 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  50. T M Braje and R W Romani, Astrophys. J. 580(2), 1043 (2002)

    Article  ADS  Google Scholar 

  51. L P Linares, M Malheiro and S Ray, Int. J. Mod. Phys. D 13, 1355 (2004)

    Article  ADS  Google Scholar 

  52. Z Yousaf, Phys. Dark Univ28, 100509 (2020)

    Article  Google Scholar 

  53. G Darmois, Mémorial des Sciences Mathématiques (Gauthier-Villars, Paris, 1927) Vol. 25

  54. K Lanczos, Ann. der Phys379, 518 (1924)

    Article  ADS  Google Scholar 

  55. F Rahaman, M Kalam and S Chakraborty, Gen. Relativ. Grav38, 1687 (2006)

    Article  ADS  Google Scholar 

  56. F Rahaman et al, Class. Quant. Grav28, 155021 (2011)

    Article  ADS  Google Scholar 

  57. A A Usmani et al, Gen. Relativ. Grav. 42, 2901 (2010)

    Article  ADS  Google Scholar 

  58. G A S Dias and P S L Jose, Phys. Rev. D 82, 084023 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at Ain Shams University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Bakry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafeek, A.T., Bakry, M.A. & Moatimid, G.M. Gravastars in \(f(R,\,\Sigma ,\,T)\) strong-gravity and antigravity theories. Pramana - J Phys 97, 189 (2023). https://doi.org/10.1007/s12043-023-02665-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02665-3

Keywords

PACS Nos

Navigation