Skip to main content
Log in

Structured matter wave evolution in external time-dependent fields

  • Research paper
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the present work, we have analysed the motion of a structured matter wave in the presence of a constant magnetic field under the influence of a time-dependent external force. We have introduced exact propagator kernels obtained from partial differential equations based on the Heisenberg equations of motion. The initial wave function is assumed to be a Gauss–Hermite wave function. For the evolved wave function, we have obtained and discussed the uncertainties, orbital angular momentum and the inertia tensor in the centre of mass frame of the density function. From the quantum interferometry of matter waves point of view, and also non-relativistic quantum electron microscopy, the results obtained here are important and more reliable than approximate methods like the axial approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R Jagannathan and S A Khan, Quantum mechanics of charged particle beam optics: Understanding devices from electron microscopes to particle accelerators (CRC Press, 2019)

  2. H Larocque, I Kaminer, V Grillo, G Leuchs, M J Padgett, R W Boyd, M Segev and E Karimi, Contemp. Phys. 59, 126 (2018)

    Article  ADS  Google Scholar 

  3. H Larocque, R Fickler, E Cohen, V Grillo, R E Dunin-Borkowski, G Leuchs and E Karimi, Phys. Rev. A 99, 023628 (2019)

    Article  ADS  Google Scholar 

  4. M Arndt, A Ekers, W von Klitzing and H Ulbricht, New J. Phys. 14, 125006 (2012)

    Article  ADS  Google Scholar 

  5. S Martellucci and M Santarsiero, Free and guided optical beams: International school of quantum electronics (World Scientific, 2004)

  6. N Fukuda, T Takiya and M Han, Appl. Phys. Res. 10, 30 (2018)

  7. S Khan and R Jagannathan, Physical Review E 51, 2510 (1995)

    Article  ADS  Google Scholar 

  8. M G Minty and F Zimmermann, Measurement and control of charged particle beams (Springer Nature, 2003)

  9. M Reiser, Theory and design of charged particle beams (John Wiley & Sons, 2008)

  10. L Allen, M W Beijersbergen, R Spreeuw and J Woerdman, Phys. Rev. A 45, 8185 (1992)

    Article  ADS  Google Scholar 

  11. K Y Bliokh, Y P Bliokh, S Savel’ev and F Nori, Phys. Rev. Lett. 99, 190404 (2007)

    Article  ADS  Google Scholar 

  12. M Uchida and A Tonomura, Nature 464, 737 (2010)

    Article  ADS  Google Scholar 

  13. J Harris, V Grillo, E Mafakheri, G C Gazzadi, S Frabboni, R W Boyd and E Karimi, Nature Phys. 11, 629 (2015)

    Article  ADS  Google Scholar 

  14. V Grillo, G C Gazzadi, E Mafakheri, S Frabboni, E Karimi and R W Boyd, Phys. Rev. Lett. 114, 034801 (2015)

    Article  ADS  Google Scholar 

  15. X Lü and S-J Chen, Commun. Nonlinear Sci. Numer. Simulat. 103, 105939 (2021)

  16. Y-H Yin, X Lü and W-X Ma, Nonlinear Dynam. 108, 4181 (2022)

    Article  Google Scholar 

  17. B Liu, X-E Zhang, B Wang and X Lü, Mod. Phys. Lett. B 36, 2250057 (2022)

    Article  ADS  Google Scholar 

  18. X Lü and S-J Chen, Nonlinear Dynam. 103, 947 (2021)

    Article  Google Scholar 

  19. A E Siegman, JOSA 63, 1093 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  20. F Pampaloni and J Enderlein, arXiv preprint arXiv:physics/0410021 (2004)

  21. G Zhou, Opt. Lett. 31, 2616 (2006)

    Article  ADS  Google Scholar 

  22. P Kruit et al, Ultramicroscopy 164, 31 (2016)

    Article  Google Scholar 

  23. W P Putnam and M F Yanik, Phys. Rev. A 80, 040902 (2009)

    Article  ADS  Google Scholar 

  24. H Okamoto, Phys. Rev. A 106, 022605 (2022)

    Article  ADS  Google Scholar 

  25. P Senthilkumaran, J Masajada and S Sato, Int. J. Opt. 2012, 517591 (2012)

    Google Scholar 

  26. R R Bommareddi, Technologies 2, 54 (2014)

  27. J-F Schaff, T Langen and J Schmiedmayer, La Rivista del Nuovo Cimento 37, 509 (2014)

    ADS  Google Scholar 

  28. F Kheirandish, The Eur. Phys. J. Plus 133, 1 (2018)

  29. V V Kotlyar, A A Kovalev and A P Porfirev, Opt. Lett. 42, 139 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fardin Kheirandish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janjan, S., Kheirandish, F. Structured matter wave evolution in external time-dependent fields. Pramana - J Phys 97, 169 (2023). https://doi.org/10.1007/s12043-023-02662-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02662-6

Keywords

PACS

Navigation