Skip to main content
Log in

Convective non-conducting magnetic fluid flow and heat transfer due to the rotating cone in the presence of magnetic dipole

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Ferrofluid flow in a rotating system is useful due to its potential applications in spin coating, effective electrical motors and rotating shaft sealing. This work investigates the flow and heat transfer of a non-conducting magnetic fluid due to the uniform rotation of a cone under the influence of a magnetic dipole. The finite element approach is used to numerically solve the nonlinear coupled differential equations. Comparison of the current numerical model with prior numerical results is also shown by discarding some physical characteristics of the current model. Increasing the buoyancy force and thermomechanical interaction increases circumferential velocity while decreasing tangential and normal velocity, whereas increasing the Prandtl number increases circumferential velocity while decreasing temperature. The dominance of buoyancy force increases tangential and circumferential friction on the cone surface as well as the heat transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B Berkovsky, V Medvedev and M Krakov (Oxford Univesity Press, New York, 1993)

  2. E Blums, A Cebers and M. Maiorov, Magnetic Fluids (Walter de Gruyter, New York, 2010)

  3. N G J Gui, C Stanley, N T Nguyen and G Rosengarten, Int. J. Heat Mass Transf. 123, 110 (2018)

    Article  Google Scholar 

  4. M Hassan, S T Mohyud-Din and M Ramzan, Indian J. Phys. 93, 749 (2019)

    Article  ADS  Google Scholar 

  5. K Raj and R Moskowitz, J. Magn. Magn. Mater. 85, 233 (1990)

    Article  ADS  Google Scholar 

  6. A Bhandari, Indian J. Phys. 96, 3221 (2022)

    Article  ADS  Google Scholar 

  7. A Bhandari, Z. Naturforsch. A 76, 683 (2021)

  8. A Bhandari, J. Tribol. 145, (2023)

  9. A Bhandari and K P S Parmar, Phys. Fluids 35, 22008 (2023)

    Article  Google Scholar 

  10. M R Zangooee, K Hosseinzadeh and D D Ganji, Theor. Appl. Mech. Lett. 12, 100357 (2022)

    Article  Google Scholar 

  11. M M Gulzar, A Aslam, M Waqas, M A Javed and K Hosseinzadeh, Appl. Nanosci. 10, 4513 (2020)

    Article  ADS  Google Scholar 

  12. M F Najafabadi, H Talebi Rostami, K Hosseinzadeh and D D Ganji, Theor. Appl. Mech. Lett. 12, 100356 (2022)

    Article  Google Scholar 

  13. S Faghiri, S Akbari, M B Shafii and K Hosseinzadeh, Theor. Appl. Mech. Lett. 12, 100360 (2022)

    Article  Google Scholar 

  14. H Talebi Rostami, M Fallah Najafabadi, K Hosseinzadeh and D D Ganji, Int. J. Ambient Energy 43, 6425 (2022)

  15. M R Zangooee, K Hosseinzadeh and D D Ganj, Nonlinear Eng. 11, 143 (2022)

    Article  ADS  Google Scholar 

  16. K L Hsiao, Appl. Therm. Eng. 112, 1281 (2017)

    Article  Google Scholar 

  17. S Li, M I Khan, F Alzahrani and S M Eldin, Case Stud. Therm. Eng. 42, 102722 (2023)

    Google Scholar 

  18. Z Liu, S Li, T Sadaf, S U Khan, F Alzahrani, M I Khan and S M Eldin, Case Stud. Therm. Eng. 44, 102821 (2023)

    Google Scholar 

  19. S U Mamatha, R L V R Devi, N A Ahammad, N A Shah, B M Rao, C S K Raju, M I Khan and K Guedri, Int. J. Mod. Phys. B 37, 2350007 (2022)

    Article  ADS  Google Scholar 

  20. K L Hsiao, Int. J. Heat Mass Transf. 112, 983 (2017)

    Article  Google Scholar 

  21. K Hosseinzadeh, M R Mardani, S Salehi, M Paikar and D D Ganji, Int. J. Appl. Comput. Math. 7, 1 (2021)

    Article  Google Scholar 

  22. K L Hsiao, Appl. Therm. Eng. 98, 850 (2016)

    Article  Google Scholar 

  23. S Li, V Puneeth, A M Saeed, A Singhal, F A M Al-Yarimi, M I Khan and S M Eldin, Sci. Rep. 13, 2340 (2023)

    Article  ADS  Google Scholar 

  24. Y-M Chu, S Jakeer, S R R Reddy, M L Rupa, Y Trabelsi, M I Khan, H A Hejazi, B M Makhdoum and S M Eldin, Case Stud. Therm. Eng. 44, 102838 (2023)

    Google Scholar 

  25. S Li, F Ali, A Zaib, K Loganathan, S M Eldin and M Ijaz Khan, Open Physics 21(1), 20220228 (2023), https://doi.org/10.1515/phys-2022-0228

  26. S Li, K Raghunath, A Alfaleh, F Ali, A Zaib, M I Khan, S M ElDin and V Puneeth, Sci. Rep. 13, 2666 (2023)

    Article  ADS  Google Scholar 

  27. Y M Li, M I Khan, S A Khan, S U Khan, Z Shah and P Kumam, Sci. Rep. 11, 126 (2021)

    Article  Google Scholar 

  28. R G Hering and R J Grosh, J. Heat Transfer 85, 29 (1963)

    Article  Google Scholar 

  29. D Anilkumar and S Roy, Appl. Math. Comput. 155, 545 (2004)

    Article  MathSciNet  Google Scholar 

  30. M Rahman, F Sharif, M Turkyilmazoglu and M S Siddiqui, Pramana – J. Phy. 96, 170 (2022)

    Article  ADS  Google Scholar 

  31. M Turkyilmazoglu, Phys. Fluids 30 (2018)

  32. M Turkyilmazoglu, Phys. Fluids 31 (2019)

  33. S J Garrett and N Peake, Eur. J. Mech. B/Fluids 26, 344 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. S J Garrett, Z Hussain and S O Stephen, J. Fluid Mech. 622, 209 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. S Ahmad, K Ali, R Saleem and H Bashir, AIP Adv. 10, (2020)

  36. M Turkyilmazoglu, Int. J. Therm. Sci. 49, 563 (2010)

    Article  Google Scholar 

  37. S Saleem and S Nadeem, J. Hydrodyn. 27, 616 (2015)

    Article  ADS  Google Scholar 

  38. M Turkyilmazoglu, J. Heat Transfer 140, (2018)

  39. S S Ghadikolaei, K Hosseinzadeh and D D Ganji, J. Mol. Liq. 272, 226 (2018)

    Article  Google Scholar 

  40. S Saleem, M M Al-Qarni, S Nadeem and N Sandeep, Commun. Theor. Phys. 70, 534 (2018)

    Article  ADS  Google Scholar 

  41. C S K Raju, M M Hoque, N N Anika, S U Mamatha and P Sharma, Powder Technol. 317, 408 (2017)

    Article  Google Scholar 

  42. S Saleem, H Firdous, S Nadeem and A U Khan, Arab. J. Sci. Eng. 44, 1515 (2019)

    Article  Google Scholar 

  43. A R Mogharrebi, A R D Ganji, K Hosseinzadeh, S Roghani, A Asadi and A Fazlollahtabar, Int. J. Numer. Methods Heat Fluid Flow 31(11), 3394 (2021), https://doi.org/10.1108/HFF-08-2020-0493

  44. M Turkyilmazoglu, Math. Comput. Simul. 177, 329 (2020)

    Article  Google Scholar 

  45. M Turkyilmazoglu, Int. J. Eng. Sci. 47, 875 (2009)

    Article  MathSciNet  Google Scholar 

  46. M Turkyilmazoglu, Int. J. Numer. Methods Heat Fluid Flow 33, 2181 (2023)

  47. C S K Raju and N Sandeep, J. Magn. Magn. Mater. 421, 216 (2017)

    Article  ADS  Google Scholar 

  48. A Bhandari and A Husain, J. Therm. Anal. Calorim. 144, 1253 (2021)

    Article  Google Scholar 

  49. J L Neuringer, Int. J. Non. Linear. Mech. 1, 123 (1966)

    Article  ADS  Google Scholar 

  50. A Bhandari, Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. Sci. 235, 5877 (2021)

  51. R E Rosensweig, Ferrohydrodynamics (Cambridge University, 1985)

  52. A Bhandari, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2020)

  53. H I Andersson and O A Valnes, Acta Mech. 128, 39 (1998)

    Article  Google Scholar 

  54. E M Sparrow, R Eichhorn and J L Gregg, Phys. Fluids 2, 319 (1959)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Bhandari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, A., Parmar, K.P.S. Convective non-conducting magnetic fluid flow and heat transfer due to the rotating cone in the presence of magnetic dipole. Pramana - J Phys 97, 185 (2023). https://doi.org/10.1007/s12043-023-02656-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02656-4

Keywords

PACS Nos

Navigation