Skip to main content
Log in

The effect of magnetic pressure on the optical response of vanadium dioxide

  • Published:
Pramana Aims and scope Submit manuscript

A Correction to this article was published on 26 March 2024

This article has been updated

Abstract

Several physical parameters, such as temperature, pressure, exciton confinement effect, quantum size effect and magnetic field effect, influence the gap of a semiconductor. In this study, we focuss on the impact of a directed magnetic field applied along one direction (oz) on bulk vanadium dioxide (\(\hbox {VO}_2\)), a material with a gap energy of 0.7 eV. This magnetic pressure resulted in the widening of the spectral absorption range of the material. To understand the effects of the magnetic field, we solved the Schrödinger equation of an electron in the conduction band. By neglecting the Coulombic interaction term and considering the spin of the electron, we obtained the energy of the Landau levels. Our results showed that the \(\hbox {VO}_2\) gap growth was relatively low, indicating that the technique used in this study may have a limited impact on the material. This paper investigates how the reduced mass affects the optical properties of \(\hbox {VO}_2\) quasielectron holes. The results show that when the reduced mass is increased from 3\(m_0\) to 21\(m_0\), the absorption gap increases, favouring an increase in absorption. This suggests that reduced mass can be used to adapt the optical properties of the materials. However, it is important to note that this study focusses on a specific case. Other factors may also affect the optical properties of the materials. For example, when a magnetic field of intensity (30 T at 500 T, where T is the unit of magnetic B-field) is applied and the material is subjected to a magnetic pressure P, there is a noticeable change in the gap energy. The objective of this study is to provide insight into the impact of a uniform magnetic field on the semiconducting state of \(\hbox {VO}_2\) and how it widens the gap in the material. The findings of this study can contribute to a better understanding of the optical properties of \(\hbox {VO}_2\) and help develop new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

References

  1. J Sui, S Liao, B Li and H Zhang, Opt. Lett. 47, 6065 (2022)

    Article  ADS  Google Scholar 

  2. S Liao, J Sui and H Zhang, Opt. Express 30, 34172 (2022)

    Article  ADS  Google Scholar 

  3. S Rao, H Fu, J Zhang, D Zhang and H Zhang, Ann. Phys. 534, 2200337 (2022)

    Article  Google Scholar 

  4. N F Mott, Rev. Mod. Phys. 40, 677 (1968)

    Article  ADS  Google Scholar 

  5. H Lu, S Clark, Y Guo and J Robertson, J. Appl. Phys. 129, 240902 (2021)

    Article  ADS  Google Scholar 

  6. V Eyert, Ann. Phys. 11, 650 (2002)

    Article  Google Scholar 

  7. R Zhang, Q S Fu, C Y Yin, C L Li, X H Chen, G Y Qian, C L Lu, S L Yuan, X J Zhao and H Z Tao, Sci. Rep. 8, 1 (2018)

    ADS  Google Scholar 

  8. B Allabergenov, S Yun and B Choi, ACS Appl. Mater. Interfaces 14, 47841 (2022)

    Article  Google Scholar 

  9. J Cao, Y Gu, W Fan, L Q Chen, D F Ogletree, K Chen, N Tamura, M Kunz, C Barrett, J Seidel and J Wu, Nano Lett. 10, 2667 (2010)

    Article  ADS  Google Scholar 

  10. A Cavalleri, T Dekorsy, H H W Chong, J C Kieffer and R W Schoenlein, Phys. Rev. B 70 (2004)

  11. K Shibuya, K Ishii, Y Atsumi, T Yoshida, Y Sakakibara, M Mori and A Sawa, Opt. Express 28, 37188 (2020)

    Article  ADS  Google Scholar 

  12. S Paradis, P Mérel, P Laou and D Alain, Technical Memorandum DRDC-VALCARTIER-TM-Vol.4. 2007-002 (2007)

  13. G Andersson, J Paju, W Lang and W Berndt, Acta Chem. Scand. 8, 1599 (1954)

    Article  Google Scholar 

  14. J B Kana Kana, G Vignaud, A Gibaud and M Maaza, Opt. Mater. 54, 165 (2016)

  15. A B Chaib, M Zouini and A Tahiri, Opt. Mater. 133, 112895 (2022)

    Article  Google Scholar 

  16. M Zouini, A B Chaib, A Mdaa and A Tahiri, Mater. Res. Express 6, 125906 (2019)

    Article  ADS  Google Scholar 

  17. L Kang, Y Gao, Z Chen, J Du, Z Zhang and H Luo, Sol. Energy Mater. Sol. Cells 94, 2078 (2010)

    Article  Google Scholar 

  18. J B Kana Kana, J M Ndjaka, G Vignaud, A Gibaud and M Maaza, Opt. Commun. 284, 807 (2011)

    Article  ADS  Google Scholar 

  19. K Dai, J Lian, M J Miller, J Wang, Y Shi, Y Liu, H Song and X Wang, Opt. Mater. Express 9, 663 (2019)

    Article  ADS  Google Scholar 

  20. A Canillas, F Güell, O Arteaga, P R Martínez-Alanis, M Vergnat, H Rinnert and B Garrido, Appl. Opt. 60, 4477 (2021)

    Article  ADS  Google Scholar 

  21. M Currie, M A Mastro and V D Wheeler, Opt. Mater. Express 7, 1697 (2017)

    Article  ADS  Google Scholar 

  22. H Kakiuchida, P Jin, S Nakao and M Tazawa, J. Appl. Phys. 46, L113 (2007)

    Article  ADS  Google Scholar 

  23. M Zouini, A B Chaib, A Mdaa and E M el Khattabi, J. Eng. Sci. Technol. Rev. 11, 26 (2018)

    Article  Google Scholar 

  24. J Lappalainen, S Heinilehto, H Jantunen and V Lantto, J. Electroceram. 22, 73 (2008)

    Article  Google Scholar 

  25. K Okimura, Md S Mian, I Yamaguchi and T Tsuchiya, Sol. Energy Mater. Sol. Cells 251, 112162 (2023)

    Article  Google Scholar 

  26. Y Zhang, W Xiong, W Chen and Y Zheng, Nanomaterials 11, 338 (2021)

    Article  Google Scholar 

  27. R Shi, N Shen, J Wang, W Wang, A Amini, N Wang and C Cheng, Appl. Phys. Rev. 6, 011312 (2019)

    Article  ADS  Google Scholar 

  28. A Ainabayev, D Mullarkey, B Walls, D Caffrey, K Zhussupbekov, A Zhussupbekova, C Ilhan, A Kaisha, P Biswas, A Tikhonov, O Murtagh and I Shvets, ACS Appl. Nano Mater. 6, 2917 (2023)

    Article  Google Scholar 

  29. S Genchi, S Nakaharai, T Iwasaki, K Watanabe, T Taniguchi, Y Wakayama, A N Hattori and H Tanaka, Jpn. J. Appl. Phys. 62, 62 (2023)

    Article  Google Scholar 

  30. J Qi, D Zhang, Q He, L Zeng, Y Liu, Z Wang, A Zhong, X Cai, F Ye and P Fan, Sens. Actuators A: Phys. 335, 113394 (2022)

    Article  Google Scholar 

  31. X Chen, J Lin and K Wang, Laser Photon. Rev. 17, 17 (2023)

    Google Scholar 

  32. T Chang, Y Zhu, C Cao, C Yang, H Luo, P Jin and X Cao, Acc. Mater. Res. 2, 714 (2021)

    Article  Google Scholar 

  33. P Markov, R E Marvel, H J Conley, K J Miller, R F Haglund and S M Weiss, ACS Photon. 2, 1175 (2015)

    Article  Google Scholar 

  34. S Biswas, J. Magn. Magn. Mater. 569, 170449 (2023)

    Article  Google Scholar 

  35. Y Sun, D Zhang and H Zhang, Opt. Express 30, 30574 (2022)

    Article  Google Scholar 

  36. H Zhang and H Zhang, Physica E Low Dimens. Syst. Nanostruct. 139, 115121 (2022)

    Article  Google Scholar 

  37. B Yu, T Tang, R Wang, S Qiao, Y Li, C Li, J Shen, X Huang and Y Cao, J. Magn. Magn. Mater. 530, 167946 (2021)

    Article  Google Scholar 

  38. Y H Matsuda, D Nakamura, A Ikeda, S Takeyama, Y Suga, H Nakahara and Y Muraoka, Nat. Commun. 11, 3591 (2020)

    Article  ADS  Google Scholar 

  39. K W Lee, J J Kweon, C E Lee, A Gedanken and R Ganesan, Appl. Phys. Lett. 96, 243111 (2010)

    Article  ADS  Google Scholar 

  40. A P Klein, J. Phys. C 3, L66 (1970)

    Article  ADS  Google Scholar 

  41. T Kawakubo, Phys. Soc. Jpn. 20, 516 (1965)

    Article  ADS  Google Scholar 

  42. D Singh, C S Yadav and B Viswanath, Mater. Lett. 196, 248 (2017)

    Article  Google Scholar 

  43. C Wu, X Zhang, J Dai, J Yang, Z Wu, S Wei and Y Xie, J. Mater. Chem. 21, 4509 (2011)

    Article  Google Scholar 

  44. Y H Matsuda, Y Muraoka, D Nakamura, A Ikeda, Y Ishii, X G Zhou, H Sawabe and S Takeyama, J. Phys. Soc. Jpn. 91, 101008 (2022)

    Article  ADS  Google Scholar 

  45. E Gornik, Opt. Laser Technol. 7, 121 (1975)

    Article  ADS  Google Scholar 

  46. F R Keßler and J Metzdorf, Mod. Probl. Condens. Matter Sci. 77, 579 (1991)

    Google Scholar 

  47. L Landau, Z. Fur. Phys. 64, 629 (1930)

    Article  ADS  Google Scholar 

  48. A Messiah and F Villars, Am. J. Phys. 27, 531 (1959)

    Article  ADS  Google Scholar 

  49. C Cohen-Tannoudji, B Diu and F Laloë, Mécanique Quantique - Tome 2 (2020)

  50. R A Stradling, Lect. Notes Phys. 152, 473 (2005)

    Article  ADS  Google Scholar 

  51. D Fu, K Liu, T Tao, K Lo, C Cheng, B Liu, R Zhang, H A Bechtel and J Wu, J. Appl. Phys. 113, 043707 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was completed at the Ecole Normale Supérieur ENS of Fez. University Sidi Mohamed Ben Abdellah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Ben Chaib.

Appendix

Appendix

$$\begin{aligned}{} & {} {[}\sigma _{{x}}, \sigma _{{y}}]=2 {i} \sigma _{{z}} \end{aligned}$$
(21)
$$\begin{aligned}{} & {} {[}\sigma _{{y}}, \sigma _{{z}}]=2 {i} \sigma _{{x}} \end{aligned}$$
(22)
$$\begin{aligned}{} & {} {[}\sigma _{{z}}, \sigma _{{x}}]=2 {i} \sigma _{{y}} \end{aligned}$$
(23)
$$\begin{aligned}{} & {} \gamma =\frac{2}{\hbar } \mu _{{B}} \end{aligned}$$
(24)
$$\begin{aligned}{} & {} \mu _{{B}}=\frac{{e\hbar }}{2 {~m}^*} \end{aligned}$$
(25)
$$\begin{aligned}{} & {} \vec {{M}}=-\gamma \vec {{S}} \end{aligned}$$
(26)
$$\begin{aligned}{} & {} \frac{1}{m_c}+\frac{1}{m_v}=\frac{1}{\mu } \end{aligned}$$
(27)
$$\begin{aligned}{} & {} \omega _{{c}}=\frac{{eB}}{\mu } \end{aligned}$$
(28)
$$\begin{aligned}{} & {} \gamma =\frac{\hbar \omega _{{c}}}{2 {R}^*}=\mu _{{B}} \cdot \frac{{m}_0}{{~m}^*} \cdot \frac{{B}}{{R}^*} \end{aligned}$$
(29)
$$\begin{aligned}{} & {} {R}^*=\frac{{m}^* {e}^4}{2 \varepsilon _{\infty }^2 \hbar ^2}. \end{aligned}$$
(30)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaib, A.B., Zouini, M. The effect of magnetic pressure on the optical response of vanadium dioxide. Pramana - J Phys 97, 174 (2023). https://doi.org/10.1007/s12043-023-02648-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02648-4

Keywords

PACS Nos

Navigation