Skip to main content
Log in

Numerical simulation of bioconvectional nanofluidic flow in the presence of activation energy past a stretching cylinder subject to swimming micro-organisms

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This study focusses on the heat and mass transfer and micro-organisms of the bioconvectional nanofluidic flow in the presence of activation energy. A mathematical model for the bioconvection has been incorporated with the existing nanofluid model past a stretching cylinder for which limited research works are present. The system of partial differential equations has been converted into ordinary differential equation by using suitable similarity transformation, and furthermore is solved by applying spectral quasilinearisation method, a newly developed numerical scheme. The obtained results are depicted graphically and analysed. Some observations regarding Brownian motion, thermal radiation, etc. are also seen in past research works, but explanation of these observations is provided in this study. Furthermore, we have reported some unprecedented behaviours of temperature and solute, microbe concentration as our conclusion, the explanation of which will be regarded as our future scope of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S U Choi and J A Eastman, Argonne National Lab (1995)

  2. K Kumar, Facta Universit. 20, 503 (2022)

    ADS  Google Scholar 

  3. J H He, N S Elgazery, K Elagamy and N Y Abd Elazem, J. Appl. Comput. Mech. 9, 848 (2023)

    Google Scholar 

  4. J H He and N Y Abd Elazem, Facta Universit. 20, 211 (2022)

    Google Scholar 

  5. H Zhang, A Nikolov and D Wasan, Langmuir 30, 9430 (2014)

    Article  Google Scholar 

  6. S J Kou, C H He, X C Men and J H He, Fractals 30, 1 (2022)

    Article  Google Scholar 

  7. R R Yang, J H He, J Y Yu and L Xu, Int. J. Nonlin. Sci. Numer. Simul. 11, 163 (2010)

    Google Scholar 

  8. Y Li and J H He, Adsorp. Sci. Technol. 37, 425 (2019)

    Google Scholar 

  9. P Sibanda, M Almakki, Z Mburu and H Mondal, Appl. Sci. 12, 108 (2022)

    Article  Google Scholar 

  10. J Buongiorno, J. Heat Transfer 128, 240 (2006)

    Article  Google Scholar 

  11. H Mondal and S Bharti, J. Appl. Comput. Mech. 6, 1058 (2020)

    Google Scholar 

  12. I Waini, A Ishak and I Pop, Mathematics 8, 612 (2020)

    Article  Google Scholar 

  13. Q Nguyen, D Bahrami, R Kalbasi and Q V Bach, Math. Meth. Appl. Sci. (2020), https://doi.org/10.1002/mma.6705

  14. F Haq, M Saleem and M Rahman, Phys. Scr. 95, 105 (2020)

    Article  Google Scholar 

  15. J R Platt, Science 133, 1766 (1961)

    Article  ADS  Google Scholar 

  16. A V Kuznetsov, Eur. J. Mech.-B\(/\)Fluids 30, 156 (2011)

  17. S Ahmad, M Ashraf and K Ali, J. Appl. Fluid Mech. 13, 1539 (2020)

    Google Scholar 

  18. S Nadeem, A Alblawi, N Muhammad, IM Alarifi, A Issakhov and M T Mustafa, J. Mol. Liq. 298, 112033 (2020)

    Article  Google Scholar 

  19. E Elanchezhian, R Nirmalkumar, M Balamurugan, K Mohana, K M Prabu and A Viloria, J. Therm. Anal. Calorim. 141, 2613 (2020)

    Article  Google Scholar 

  20. M M Bhatti, M Marin, A Zeeshan, R Ellahi and S I Abdelsalam, Front. Phys. 8, 95 (2020)

    Article  Google Scholar 

  21. A Shafiq, G Rasool, CM Khalique and S Aslam, Symmetry 12, 621 (2020)

    Article  ADS  Google Scholar 

  22. Q H Shi, A Hamid, M I Khan, R N Kumar, R J P Gowda, B C Prasannakumara, N A Shah, S U Khan and J D Chung, Sci. Rep. 11, 1 (2021)

    Article  ADS  Google Scholar 

  23. Y M Chu, M I Khan, N B Khan, S Kadry, S U Khan, I Tlili and M K Nayak, Int. Commun. Heat Mass Transfer 118, 104893 (2020)

    Article  Google Scholar 

  24. A Abbasi, F Mabood, W Farooq and M Batool, Int. Commun. Heat Mass Transfer 119, 104921 (2020)

    Article  Google Scholar 

  25. U Farooq, S Munir, F Malik, B Ahmad and D Lu,AIP Adv. 10, 075110 (2020)

    Article  ADS  Google Scholar 

  26. K Hosseinzadeh, S Roghani, A R Mogharrebi, A Asadi, M Waqas and D D Ganji, Alex. Eng. J. 59, 3297 (2020)

    Article  Google Scholar 

  27. A A Khan, A Arshad, R Ellahi and S M Sait, Int. J. Numer. Methods Heat Fluid Flow 33, 135 (2023)

  28. T Muhammad, S Z Alamri, H Waqas, D Habib and R Ellahi, J. Therm. Anal. Calorim. 143, 945 (2021)

    Article  Google Scholar 

  29. A Majeed, A Zeeshan, S Z Alamri and R Ellahi, Neural Comput. Appl. 30, 1947 (2018)

    Article  Google Scholar 

  30. M Dhlamini, H Mondal, P Sibanda, S S Mosta and S Shaw, Pramana – J. Phys. 96, 1 (2022)

    Google Scholar 

  31. C H He and Y O El-Dib, J. Low Freq. Noise Vib. Act. Control 41, 572 (2022)

  32. N Anjum, J H He, Q T Ain and D Tian, Facta Universit. 19, 601 (2021)

    Google Scholar 

  33. Q P Ji, J Wang, L X Lu and C F Ge, J. Low Freq. Noise Vib. Act. Control 40, 675 (2021)

  34. C H He and C Liu, Fractals 30, 1 (2022)

    MathSciNet  Google Scholar 

  35. A Samanta and H Mondal, Heat Transfer 51, 7773 (2022)

    Article  Google Scholar 

  36. H Waqas, U Farooq, Z Shah, P Kumam and M Shutaywi, Sci. Rep. 11, 1 (2021)

    Article  Google Scholar 

  37. L A Cameron, P A Giardini, F S Soo and J A Theriot, Nature Rev. Mol. Cell Biol. 1, 110 (2000)

    Article  Google Scholar 

  38. P Rana and R Bhargava, Commun. Nonlinear Sci. Numer. Simul. 17, 212 (2012)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiranmoy Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, A., Mondal, H. Numerical simulation of bioconvectional nanofluidic flow in the presence of activation energy past a stretching cylinder subject to swimming micro-organisms. Pramana - J Phys 97, 182 (2023). https://doi.org/10.1007/s12043-023-02644-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02644-8

Keywords

PACS Nos

Navigation