Skip to main content
Log in

A comparative framework for the hybrid class nanomaterials (polyethylene glycol + water\(/\)zirconium dioxide + magnesium oxide) with radiative flux towards a moving surface

  • Published:
Pramana Aims and scope Submit manuscript

A Correction to this article was published on 20 January 2024

This article has been updated

Abstract

The main theme of this research is to deliberate the irreversibility aspects of spinning nanofluid (PEG-H2O\(/\)ZrO2) and hybrid (PEG-H2O\(/\)ZrO2–MgO) nanofluid towards a movable sheet. Here a mixture of polyethylene glycol and water is utilised as a continuous phase fluid. Two different nanoparticles are considered, i.e., zirconium dioxide (ZrO2) and magnesium oxide (MgO). The heat transfer behaviour is examined and modelled subject to viscous dissipation, heat source and heat flux. Furthermore, the entropy generation problem is addressed by the second law of thermodynamics. Nonlinear dimensionless differential systems are developed by suitable variables. The given dimensionless systems are solved using numerical techniques (ND-solve method). Effects of influential variables on fluid flow, temperature, Bejan number and entropy rate for both PEG-H2O\(/\)ZrO2 and PEG-H2O\(/\)ZrO2–MgO fluids are graphically examined. A higher approximation of volume fractions rises the velocity profile, while reverse impact is seen for the Bejan number. An increment in rotation variable corresponds to increased velocity. A similar scenario is seen for the thermal field and entropy rate through the radiation effect. An opposite impact is seen for the Bejan number and entropy rate through the Brinkman number. An augmentation in temperature is seen for the Eckert number. Furthermore, we noticed that heat transport in a hybrid nanofluid (PEG-H2O\(/\)ZrO2–MgO) is higher than that for the nanofluid (PEG-H2O\(/\)ZrO2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

References

  1. S U S Choi, ASME, J. Fluids Eng. Publication Fed. 231, 99 (1995)

    Google Scholar 

  2. J A Eastman, S U S Choi, S Li, W Yu and L J Thompson, Appl. Phys. Lett. 78, 718 (2001)

    Article  ADS  Google Scholar 

  3. Preeti and O Ojjela, Math. Comput. Simul. 193, 100 (2022)

  4. B Mahanthesh, B J Gireesha, N S Shashikumar and S A Shehzad, Physica E Low Dimens. Syst. Nanostruct. 94, 25 (2017)

    Article  ADS  Google Scholar 

  5. U S Mahabaleshwar, A B Vishalakshi and H I Andersson, Chin. J. Phys. 75, 152 (2022)

    Article  Google Scholar 

  6. Z Xu, J Lu, X Zheng, B Chen, Y Luo, M N Tahir, B Huang, X Xia and X Pan, J. Hazard. Mater. 399, 123057 (2020)

    Article  Google Scholar 

  7. T Hayat, S A Khan, A Alsaedi and Q M Z Zia, Int. Commu. Heat Mass Transf. 118, 104881 (2020)

    Article  Google Scholar 

  8. T Chen, X Wang, S J Ma, X Ma, Y Zhang, L Luo and Z Yuan, Solid State Sci. 106, 106425 (2020)

    Article  Google Scholar 

  9. C Li, J Huang, Y Shang and H Huang, Case Stud. Therm. Eng. 22, 100746 (2020)

    Google Scholar 

  10. X Yin, C Hu, M Bai and J Lv, Int. J. Heat Mass Trans. 162, 120338 (2020)

    Article  Google Scholar 

  11. Shu-Rong Yan, D Toghraie, M Hekmatifar, M Miansari and S Rostami, J. Mol. Liq. 311, 113222 (2020)

    Article  Google Scholar 

  12. S Jana, A S Khojin and W H Zhong, Thermochimica 462, 45 (2007)

    Article  Google Scholar 

  13. S Suresh, K P Venkitaraj and P Selvakumar, Adv. Mat. Res. 328330, 1560 (2011)

    Google Scholar 

  14. S A Khan, T Saeed, M I Khan, T Hayat, M I Khan and A Alsaedi, Int. J. Hydrogen Energy 44, 31579 (2019)

    Article  Google Scholar 

  15. S Kumar, P K Sharma and P Rana, Adv. Powder Technol. 30, 2787 (2019)

    Article  Google Scholar 

  16. S S S Sen, M Das, R Mahato and S Shaw, Int. Commun. Heat Mass Trans. 129, 105704 (2019)

    Article  Google Scholar 

  17. M G Reddy, N R Kumar, B C Prasannakumara, N G Rudraswamy and K Ganesh Kumar, Commun. Theor. Phys. 73, 045002 (2021)

    Article  ADS  Google Scholar 

  18. Q Fu, K Luo, Y Song, M Zhang, S Zhang, J Zhan, J Duan and Y Li, Appl. Sci. 12, 3390 (2022)

    Article  Google Scholar 

  19. Y Chen, J Li, J Lu, M Ding and Y Chen, Polymer Testing 108, 107516 (2022)

    Article  Google Scholar 

  20. J Lu, Y Chen, M Ding, X Fan, J Hu, Y Chen, J Li, Z Li and W Liu, Carbohydrate Polymers 277, 118871 (2022)

    Article  Google Scholar 

  21. T Tayebi, H F Öztop and A J Chamkha, Therm. Sci. Eng. Prog. 19, 100605 (2020)

    Article  Google Scholar 

  22. B Kumbhakar and S Nandi, Math. Comput. Simul. 194, 563 (2021)

    Article  Google Scholar 

  23. M Izadi, M A Sheremet and S A M Mehryan, Chin. J. Phys. 65, 447 (2020)

    Article  Google Scholar 

  24. T Hayat, Z Hussain, A Alsaedi and S Asghar, Adv. Powder Technol. 27, 1677 (2016)

    Article  Google Scholar 

  25. Z Hussain, S Muhammad and M S Anwar, Adv. Mech. Eng. 13, (2021), doi: https://doi.org/10.1177/1687814021999526

  26. A Bejan, Energy Int. J. 5, 721 (1980)

    Article  ADS  Google Scholar 

  27. A Bejan (CRC Press, USA, 1996)

  28. T Hayat, S A Khan and A Alsaedi, J. Mater. Res. Technol. 9, 11993 (2020)

    Article  Google Scholar 

  29. T Tayebi, H F Öztop and A J Chamkha, Ther. Sci. Eng. Prog. 19, 100605 (2020)

    Article  Google Scholar 

  30. M I Khan and F Alzahrani, Int. J. Hydrogen Energy 46, 1362 (2021)

    Article  Google Scholar 

  31. M A Vatanparast, S Hossainpour, A K Asl and S Forouzi, Int. Commu. Heat Mass Transf. 111, 104446 (2020)

    Article  Google Scholar 

  32. K G Kumar, The Eur. Phys. J. Plus 137, 669 (2022)

    Article  ADS  Google Scholar 

  33. A Yan, Z Li, J Cui, Z Huang, T Ni, P Girard and X Wen, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2022), doi: https://doi.org/10.1109/TCAD.2022.3213212

    Article  Google Scholar 

  34. S Li, F Ali, A Zaib, K Loganathan, S M Eldin and M I Khan, Open Phys. 21, 20220228 (2023)

    Article  ADS  Google Scholar 

  35. M V V N L Sudharani, D G Prakasha, K G Kumar and A J Chamkha, Eur. Phys. J. Plus 138, 257 (2023)

    Article  Google Scholar 

  36. A Yan, Z Li, J Cui, Z Huang, T Ni, P Girard and X Wen, IEEE Trans. Aerospace Electron. Syst. 59(3), 2885 (2022), doi: https://doi.org/10.1109/TAES.2022.3219372

  37. S Li, M I Khan, F Alzahrani and S M Eldin, Case Stud. Therm. Eng. 42, 102722 (2023)

    Article  Google Scholar 

  38. D G Prakasha, M V V N L Sudharani, K G Kumar and A J Chamkha, Int. Commun. Heat Mass Transf. 140, 106557 (2023)

    Article  Google Scholar 

  39. W Fu, L Sun, H Cao, L Chen, M Zhou, S Shen, Y Zhu and S Zhuang, IEEE Sensors J. 23(2), (2023), doi: https://doi.org/10.1109/JSEN.2023.3268167

    Article  Google Scholar 

  40. S Li, V Puneeth, A M Saeed, A Singhal, F A M Al-Yarimi, M I Khan and S M Eldin, Sci. Rep. 13, 2340 (2023)

    Article  ADS  Google Scholar 

  41. M G Reddy, K G Kumar and S Shehzad, Phys. Scr. 95, 125201 (2020)

    Article  ADS  Google Scholar 

  42. Y Du, Y Xie, X Liu, H Jiang, F Wu, H Wu and D Xie, ACS Sustain. Chem. Eng. 11, 4498 (2023)

    Google Scholar 

  43. Z Song, D Han, M Yang, J Huang, X Shao and H Li, Appl. Surf. Sci. 607, 155067 (2023)

    Article  Google Scholar 

  44. Z Liu, S Li, T Sadaf, S U Khan, F Alzahrani, M I Khan and S M Eldin, Case Stud. Therm. Eng. 44, 102821 (2023)

    Article  Google Scholar 

  45. K G Kumar, E H B Hani, M E H Assad, M Rahimi-Gorji and S Nadeem, Microsyst. Techn. 27, 97 (2021)

    Article  Google Scholar 

  46. L Kong and G Liu, Matt. Radiation at Extremes 6, 68202 (2022)

    Article  Google Scholar 

  47. Q Fu, L Si, J Liu, H Shi and Y Li, Appl. Opt. 61, 6330 (2022)

    Article  ADS  Google Scholar 

  48. S Li, K Raghunath, A Alfaleh, F Ali, A Zaib, M I Khan, S M Eldin and V Puneeth, Sci. Rep. 13, 2666 (2023)

    Article  ADS  Google Scholar 

  49. A F Al-Hossainy and M R Eid, Surf. Interf. 23, 100971 (2021)

    Article  Google Scholar 

  50. M R Eid and A F Al-Hossainy, Waves Rand. Comp. Media, pp. 1–26, in Press (2021)

  51. A Alshehri and Z Shah, Case Stud. Therm. Eng. 30, 101728 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. (G: 389-130-1442). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Ijaz Khan.

Additional information

The original online version of this article was revised to update the incorrect funding information and correct funding information should have read This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. (G: 389-130-1442). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzahrani, F., Khan, M.I. A comparative framework for the hybrid class nanomaterials (polyethylene glycol + water\(/\)zirconium dioxide + magnesium oxide) with radiative flux towards a moving surface. Pramana - J Phys 97, 160 (2023). https://doi.org/10.1007/s12043-023-02643-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02643-9

Keywords

PACS Nos

Navigation