Skip to main content
Log in

The behaviour of ethylene glycol-based rotating nanofluid flow with thermal radiation and heat generation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This present study involves examining the nature of 3D rotational MHD nanofluid flow through a stretching sheet. Alumina \(\left( {{\text{Al}}_{2} {\text{O}}_{3} } \right)\)–ethylene glycol \(\left( {{\text{C}}_{2} {\text{H}}_{6} {\text{O}}_{2} } \right)\)-based nanofluid is considered in this investigation. A normal magnetic field acts on the sheet. Radiative thermal boundary condition with slip velocity has been considered. Suitable similarity transformation is used to derive a system of ordinary differential equations. The spectral quasilinearisation method (SQLM) is applied to solve this system. For curiosity, the skin friction coefficient and Nusselt number have been calculated. Due to effective heat generation and heat radiation, a significant temperature difference is produced. Besides, the impact of the variation in the volume fraction of nanoparticles is remarkable. The influence of key parameters has also been shown graphically. The graphical representation shows that the magnetic parameter declines in the radial velocity component, while the layout of the tangential component of velocity enhances in the form of a parabola with an enhancement of the magnetic parameter. Temperature layout is enhanced with the increasing values of the magnetic parameter, nanoparticle volume fraction, temperature ratio parameter, radiation parameter and Biot number. The generation of entropy enhances with the increase in the magnetic parameter, Brinkman number and Reynolds number, while nanoparticle volume fraction and temperature difference parameters decrease the entropy generation. For the engineering interest, the skin friction coefficient along the x-axis, y-axis and the local Nusselt number have also been calculated. The impacts of pertinent parameters on the skin friction coefficient along the x-axis, y-axis and the local Nusselt number are scrutinised numerically. We have compared our current result with the available studies for special cases \(\left( {\phi = 0,\,M = 0} \right)\) and found that the results are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. S U S Choi and J A Eastman, Argonne National Lab., Argonne, IL (United States, 1995)

  2. M Mustafa, A Mushtaq, T Hayat and A Alsaedi, Plos One 11, e0149304 (2016)

    Article  Google Scholar 

  3. S Mukherjee, S Jana, P C Mishra, P Chaudhuri and S Chakrabarty, Int. J. Therm. Sci. 159, 106581 (2021)

    Article  Google Scholar 

  4. T Wen, L Lu, S Zhang and H Zhong, Appl. Therm. Eng. 182, 116089 (2021)

    Article  Google Scholar 

  5. S M S Hosseini and M S Dehaj, Appl. Therm. Eng. 182, 116086 (2021)

    Article  Google Scholar 

  6. J Albadr, S Tayal and M Alasadi, Case Stud. Therm. Eng. 1, 38 (2013)

    Article  Google Scholar 

  7. A Patra, M K Nayak and A Misra, J. Appl. Comput. Mech. 6, 640 (2020)

    Google Scholar 

  8. M I Afridi, M Qasim and I Khan, J. Korean Phys. Soc. 73, 1303 (2018)

    Article  ADS  Google Scholar 

  9. Z Shah, P Kumam and W Deebani, Sci. Rep. 10, 4402 (2020)

    Article  ADS  Google Scholar 

  10. G Sandhya, G Sarojamma and P V Satya Narayana, Heat Transf. 50, 784 (2021)

    Article  Google Scholar 

  11. E R EI Zahar, A M Rashad and L F Seddek, Symmetry 12, 1450 (2020)

    Article  ADS  Google Scholar 

  12. M Amer Qureshi, Symmetry 13, 10 (2020)

    Article  ADS  Google Scholar 

  13. Z U Din, A Ali, M De La Sen and G Zaman, Sci. Rep. 12, 1791 (2022)

    Article  ADS  Google Scholar 

  14. Z U Din, A Ali and G Zaman, Arch. Appl. Mech. 92, 933 (2022)

    Article  ADS  Google Scholar 

  15. A Shahsavar, P Farhadi, C Yıldız, M Moradi and M Arıcı, Int. J. Mech. Sci. 225, 107338 (2022)

    Article  Google Scholar 

  16. H K Hamzah, F H Ali and M Hatami, Sci. Rep. 12, 2881 (2022)

    Article  ADS  Google Scholar 

  17. S Alqaed, J Mustafa and M Sharifpur, Eng. Anal. Bound. Elem. 140, 507 (2022)

    Article  MathSciNet  Google Scholar 

  18. T Salahuddin, I Imtiaz and M Khan, Appl. Math. Comput. 413, 126616 (2022)

    Google Scholar 

  19. S Liu, D Bahrami, R Kalbasi, M Jahangiri, Y Lu, X Yang, S S Band, K W Chau and A Mosavi, Eng. Appl. Comput. Fluid Mech. 16(1), 952 (2022)

    Google Scholar 

  20. H Waqas, T Muhammad, S Noreen, U Farooq and M Alghamdi, Case Stud. Therm. Eng. 28, 101504 (2021)

    Google Scholar 

  21. A Shahsavar, M Jafari, P Talebizadehsardari and D Toghraie, Chin. J. Chem. Eng. 32, 27 (2021)

    Article  Google Scholar 

  22. S Marzougui, F M Oudina, M Magherbi and A Mchirgui, Int. J. Numer. Methods Heat Fluid Flow 32, 2047 (2022), doi: https://doi.org/10.1108/HFF-04-2021-0288

    Article  Google Scholar 

  23. M Shoaib, M A Z Raja, M A R Khan, I Farhat and S E Awan, Surf. Interfaces 25, 101243 (2021)

    Article  Google Scholar 

  24. P Sreedevi and P S Reddy, Phys. Scr. 96, 085210 (2021)

    Article  ADS  Google Scholar 

  25. U Farooq, H Waqas, M Imran, M Alghamdi and T Muhammad, J. Mater. Res. Technol. 14, 3059 (2021)

    Article  Google Scholar 

  26. T Tayebi, A S Dogonchi, N Karimi, H G JiLe, A J Chamkha, Y Elmasry, Sustain. Energy Technol. Assess. 46, 101274 (2021)

    Google Scholar 

  27. H Upreti, A K Pandey and M Kumar, J. Porous Media 24, 3 (2021)

    Article  Google Scholar 

  28. Y X Li, I Khan, R J P Gowda, A Ali, S Farooq, Y M Chu and S U Khan, Chin. J. Phys. 73, 275 (2021)

    Article  Google Scholar 

  29. A Sahoo and R Nandkeolyar, Sci. Rep. 11, 1 (2021)

    Article  ADS  Google Scholar 

  30. M Almakki, H Mondal and P Sibanda, J. Therm. Eng. 6, 327 (2020)

    Article  Google Scholar 

  31. D Pal, S Mondal, H Mondal, Int. J. Ambient Energy 42(15), 1712 (2021)

    Article  Google Scholar 

  32. M Dhlamini, H Mondal, P Sibanda and S Motsa, Int. J. Ambient Energy 43, 1495 (2022)

    Article  Google Scholar 

  33. M Almakki, H Mondal and P Sibanda, World J. Eng. 17, 1 (2020)

    Article  Google Scholar 

  34. P Abhimanyu, P Kaushik, P K Mondal and S Chakraborty, J. Non-Newton. Fluid Mech. 231, 56 (2016), doi: https://doi.org/10.1016/j.jnnfm.2016.03.006

    Article  Google Scholar 

  35. P Kaushik, P Abhimanyu, P K Mondal and S Chakraborty, J. Non-Newton. Fluid Mech. 244, 123 (2017)

    Google Scholar 

  36. P Kaushik, P K Mondal and S Chakraborty, Microfluid. Nanofluidics, 21, 1 (2017), doi: https://doi.org/10.1007/s10404-017-1957-9

    Article  Google Scholar 

  37. P Kaushik, P K Mondal, P K Kundu and S Wongwises, Phys. Fluids 31, 022009 (2019)

    Article  ADS  Google Scholar 

  38. A Mukherjee and P K Mondal, J. Therm. Sci. Eng. Appl. 10, 041022 (2018)

    Article  Google Scholar 

  39. P K Mondal and S Wongwises, Proc. Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 234, 318 (2020)

    Article  Google Scholar 

  40. S Balasubramanian, P Kaushik and P K Mondal, Phys. Fluids 32, 112003 (2020)

    Article  ADS  Google Scholar 

  41. M Kumar and P K Mondal, Colloids Surf. A: Physicochem. Eng. Asp. 635, 128077 (2022)

    Article  Google Scholar 

  42. M Kumar and P K Mondal, Phys. Fluids 33, 093113 (2021)

    Article  ADS  Google Scholar 

  43. P Kaushik and P K Mondal, Microfluid. Nanofluidics 26, 56 (2022)

    Article  Google Scholar 

  44. P Kaushik, P Shyam and P K Mondal, Phys. Fluids 34, 062008 (2022)

    Article  ADS  Google Scholar 

  45. M Kumar and P K Mondal, J. Thermophys. Heat Transf. 37, 213 (2023)

    Article  Google Scholar 

  46. H C Brinkman, J. Chem. Phys. 20, 571 (1952), doi: https://doi.org/10.1063/1.1700493

    Article  ADS  Google Scholar 

  47. E A Nada, Z Masoud, H F Oztop and A Campo, Int. J. Therm. Sci. 49, 479 (2010), doi: https://doi.org/10.1016/j.ijthermalsci.2009.09.002

    Article  Google Scholar 

  48. T Hayat, R Riaz, A Aziz and A Alsaedi, Phys. Scr. 94, 125703 (2019)

    Article  ADS  Google Scholar 

  49. S Liao, Beyond perturbation: Introduction to the homotopy analysis method (CRC Press, 2003)

  50. S S Motsa, V M Magagula and P Sibanda, Sci. World J. 2014, 581987 (2014), doi: https://doi.org/10.1155/2014/581987

    Article  Google Scholar 

  51. M Dhlamini, H Mondal, P Sibanda, S S Mosta and S Shaw, PramanaJ. Phys. 96, 112 (2022), doi: https://doi.org/10.1007/s12043-022-02351-w

    Article  Google Scholar 

  52. R K Tiwari and M K Das, Int. J. Heat Mass Transf. 50, 2002 (2007)

    Article  Google Scholar 

  53. C Y Wang, Z. Angew. Math. Phys. 39, 177 (1988)

    Article  Google Scholar 

  54. R Nazar, N Amin and I Pop, Mech. Res. Commun. 31, 121 (2004)

    Article  Google Scholar 

  55. M Mustafa, A Mushtaq, T Hayat and A Alsaedi, Plos One 11, e0149304 (2016), doi: https://doi.org/10.1371/journal.pone.0149304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiranmoy Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Mondal, H. & Nandkeolyar, R. The behaviour of ethylene glycol-based rotating nanofluid flow with thermal radiation and heat generation. Pramana - J Phys 97, 164 (2023). https://doi.org/10.1007/s12043-023-02626-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02626-w

Keywords

PACS Nos

Navigation