Skip to main content

Advertisement

Log in

External electric field impact on electronic properties of CO2-adsorbed 2D MoSe2 monolayer

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This study concentrates on the CO2 capture ability of 2D MoSe2 monolayer by first principle calculations. CO2 capture is important to study the reduction of CO2 to hydrogen (green fuel). In this study, at first, the capture of CO2 is expressed in terms of adsorption energy (Eads) and its variation by applying an external electric field is analysed. The adsorption energy is first decreased and then increased with the increase of the electric field from −2 to +2 eV\(/\)Å. Secondly, the impact of the electric field on the dipole moment is observed. Interestingly, the magnitude of the dipole moment shifts from negative to 0 and further to positive (a.u.) by the application of the external electric field from −2 to +2 eV\(/\)Å. Also, the applied electric field shows a significant impact on the charge capacity of the CO2-adsorbed MoSe2 monolayer. Later, the enhanced electronic conductivity is in alignment with the shift from semiconducting to metallic nature. Lastly, the de-capture property of MoSe2 monolayer towards CO2 gas molecule is estimated using recovery time (τ). Here, the external electric field eases the de-capture of CO2 gas molecules with minimum time for 2 eV\(/\)Å and stiffer for 0 eV\(/\)Å electric field relatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. R M Duren and C E Miller, Nat. Clim. Change 2, 560 (2012)

    Article  ADS  Google Scholar 

  2. A Corma and H Garcia, J. Catal. 308, 168 (2013)

    Article  Google Scholar 

  3. S Hussain, Y Wang, L Guo and T He, J. Photochem. Photobiol. C: Photochem. Rev. 52, 100538 (2022)

    Article  Google Scholar 

  4. S Zhao, J Xue and W Kang, Chem. Phys. Lett. 595–596, 35 (2014)

    Article  ADS  Google Scholar 

  5. H Cui, G Zhang, X Zhang and J Tang, Nanoscale Adv. 1, 772 (2018)

    Article  ADS  Google Scholar 

  6. H Cui, D Chen, Y Zhang and X Zhang, Sustain. Mater. Technol. 20, e00094 (2019)

    Google Scholar 

  7. W Hui, G Chang and W Gao, Phys. E 122, 114167 (2020)

    Article  Google Scholar 

  8. Y Zhang, X Sun, S Tan, T Liue and H Cui, Appl. Surface Sci. 487, 930 (2019)

    Article  ADS  Google Scholar 

  9. K Li, X An, K H Park, M Khraisheh and J Tang, Catal. Today 224, 3 (2014)

    Article  Google Scholar 

  10. Y Fan, J Zhang, Y Qiu, J Zhu, Y Zhang and G Hu, Comput. Mater. Sci. 138, 255 (2017)

    Article  Google Scholar 

  11. G Wang, J Chang, W Tang, W Xie and Y S Ang, J. Phys. D 55, 293002 (2022)

    Article  ADS  Google Scholar 

  12. H Wang, W Liu, S Jin, X Zhang and Y Xie, ACS Cent. Sci. 6, 1058 (2020)

    Google Scholar 

  13. Q Xiang, J Yu and M Jaroniec, Chem. Soc. Rev. 41, 782 (2012)

    Article  Google Scholar 

  14. J N Coleman et al, Science 331, 568 (2011)

  15. A N Enyashin and G Seifert, Nanosyst. Phys. Chem. Math. 5, 517 (2014)

    Google Scholar 

  16. D Veoiry, A Mohite and M Chhowalla, Chem. Soc. Rev. 44, 2702 (2015)

    Article  Google Scholar 

  17. J J Mortensen, L B Hansen and K W Jacobsen, Phys. Rev. B 71, 035109 (2005)

    Article  ADS  Google Scholar 

  18. J P Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  19. M Cococcioni and S Gironcoli, Phys. Rev. B 71, 035105 (2005)

    Article  ADS  Google Scholar 

  20. H J Monkhorst and J D Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  21. V Nagarajan and R Chandiramouli, Appl. Surface Sci. 413, 109 (2017)

    Article  ADS  Google Scholar 

  22. N Mishra, B P Pandey, B Kumar and S Kumar, IEEE Trans. Electron Devices 69, 1634 (2021)

    Article  ADS  Google Scholar 

  23. N Mishra, B P Pandey and S Kumar, IEEE Sensors J. 21, 9756 (2021)

    Article  ADS  Google Scholar 

  24. A Mosahebfard, R Safaiee and M H Sheikhi, Pramana J. Phys. 93, 9 (2019)

    Article  ADS  Google Scholar 

  25. F L Hirshfeld, Theoret. Chim. Acta 44, 129 (1977)

  26. N Mishra, B P Pandey, B Kumar and S Kumar, Superlatt. Micro. 160, 107083 (2021)

    Article  Google Scholar 

  27. S Ma, L Su, L Jin, J Su and Y Jin, Phys. Lett. A 383, 1 (2019)

    Article  ADS  Google Scholar 

  28. P Zhao, J Zheng, P Guo, Z Jiang, L Cao and Y Wan, Comput. Mater. Sci. 128, 287 (2017)

    Article  Google Scholar 

  29. N Zhao and U Schwingenschlögl, npj 2D Mater. Appl. 5, 72 (2021)

  30. A Shokri and N Salami, Sens. Act. B 236, 378 (2016)

    Article  Google Scholar 

  31. Z Lin, J Ye and Y An, J. Alloys Cmpds 805, 578 (2019)

    Article  Google Scholar 

  32. A Miralrio, E Rangel and M Castro, Appl. Surface Sci. 481, 611 (2019)

    Article  ADS  Google Scholar 

  33. Y Ma, Y Dai, M Guo and C Niu, Y Zhu and B Huang, ACS Nano 6, 1695 (2012)

    Article  Google Scholar 

  34. L Huang, B Li, M Zhong, Z Wei and J Li, J. Phys. Chem. C 121, 9305 (2017)

    Article  Google Scholar 

  35. H Cui, P Jia, X Peng and X Hu, IEEE Sensors J. 21, 3602 (2021)

  36. K Duan, W Li, C Zhu, J Li, J Xu and X Wang, Result Phys. 34, 104256 (2022)

    Article  Google Scholar 

  37. N Mishra, B P Pandey, B Kumar, V K Tomar and S Kumar, IEEE Sensors J. 22, 11665 (2022)

    Article  ADS  Google Scholar 

  38. S Peng, K Cho, P Qi and H Dai, Chem. Phys. Lett. 387, 271 (2004)

    Article  ADS  Google Scholar 

  39. H Cui, D Chen, Y Zhang and X Chang, Sustainable Mater. Technol. 20, 94 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bramha P. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, S.N., Pandey, B.P., Mishra, N. et al. External electric field impact on electronic properties of CO2-adsorbed 2D MoSe2 monolayer. Pramana - J Phys 97, 140 (2023). https://doi.org/10.1007/s12043-023-02613-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02613-1

Keywords

PACS Nos

Navigation