Skip to main content
Log in

Theoretical investigation of an array of Josephson junction neuron circuits actuating a mechanical leg and the array in mimicking a multi-legged locomotion

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This study aims at the analytical and numerical investigations of Josephson junction (JJ) neuron circuits actuating a mechanical arm and the array. The rate equations for the proposed electromechanical system are established. Numerical simulations of the electromechanical system resulted in a well-defined action potential (AP) and subsequently the actuation of the leg attached to the mechanical arm in an excitable state. Furthermore, the impact of the magnetic field and the effect of mass are as follows: an increase in the magnetic field accelerates the motion of the legs and the amplitude of the displacement decreases with an increase in the mass, and the displacement takes the form of a constant wave for some particular masses as underlined by numerical simulations. A bio-inspired electromechanical system for the locomotion of millipedes and centipedes is proposed and the model failed to propagate the signal in an array of legs since each JJ neuron circuit produces its signal at the same time, because the stimulation is not well-defined by this model of the JJ neuron circuit, despite the advantages of the JJ neuron circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M Canturk and I N Askerzade, J. Supercond. Nov. Magn. 26, 839 (2013)

  2. I K Ngongiah, B Ramakrishnan, Z T Njitacke, G F Kuiate and S T Kingni, Phys. A Stat. Mech. Appl. 603, 127757 (2022)

  3. J Ramadoss, I K Ngongiah, A C Chamgoué, J R Mboupda Pone, K Rajagopal and S T Kingni, Phys. Scr. 96, 1252321 (2021)

    Google Scholar 

  4. S T Kingni, G F Kuiate, R Kengne, R Tchitnga and P Woafo, Complexity 2017, 1 (2017)

    Article  Google Scholar 

  5. E M Shahverdiev, L H Hashimova, P A Bayramov and R A Nuriev, J. Supercond. Nov. Magn. 27, 2225 (2014)

    Article  Google Scholar 

  6. S Sancho and A Suarez, IEEE Trans. Circuits Syst. I: Regul. Pap. 61, 512 (2014)

    Article  Google Scholar 

  7. S K Dana, D C Sengupta and K D Edoh, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 48, 990 (2001)

  8. G Filatrella, N F Pedersen, C J Lobb and P Barbara, Eur. Phys. J. B 34, 3 (2003)

  9. I Borodianskyi, Superradiant THz wave emission from arrays of Josephson junctions, Doctoral dissertation (Department of Physics, Stockholm University, 2020) pp. 1–67

  10. A Uchida, H Iida, N Maki, M Osawa and S Yoshimori, IEEE Trans. Appl. Supercond. 14, 2064 (2004)

    Article  ADS  Google Scholar 

  11. R Kleiner, P Müller, H Kohlstedt, N F Pedersen and S Sakai, Phys. Rev. B 50, 3942 (1994)

    Article  ADS  Google Scholar 

  12. D Domínguez and H A Cerdeira, Phys. Rev. B 52, 513 (1995)

    Article  ADS  Google Scholar 

  13. N Vogt et al, Phys. Rev. B 92, 045435 (2015)D

  14. D Crété et al, Micromachines 12, 1588 (2021)

    Article  Google Scholar 

  15. R Glowinski, J López, H Juárez and Y Braiman, J. Comput. Phys. 403, 109023 (2020)

    Article  MathSciNet  Google Scholar 

  16. J C LeFebvre, E Cho, H Li, H Cai and S A Cybart, J. Appl. Phys. 131, 163902 (2022)

    Article  ADS  Google Scholar 

  17. N M Kouami, B Nana and P Woafo, Phys. C Supercond. Appl. 574, 1 (2020)

    Google Scholar 

  18. R Harris et al, Phys. Rev. B 80, 052506 (2009)

    Article  ADS  Google Scholar 

  19. G M Ngueuteu, R Yamapi and P Woafo, J. Sound Vib. 318, 1119 (2008)

    Article  ADS  Google Scholar 

  20. H H Lund, Human aspects of IT for the aged population. Design for Everyday Life (Springer-Verlag, 2015) Vol. 9194, p. 500

  21. H H Lund and J D Jessen, GAMES Heal. Res. Dev. Clin. Appl. 3, 277 (2014)

    Google Scholar 

  22. M Sood and S W Leichtle, Essentials of robotic surgery (Spry Publishing, 2013)

  23. T D Coates, Neural interfacing, forging the human-machine connection (Morgan and Clayton Publishers, 2008)

  24. I R Nourbakhsh, Robot futures (The MIT Press, Massachusetts, 2013)

    Google Scholar 

  25. J L Pons, Wearable robots: Biomechatronic exo-skeletons (John Wiley and Sons Ltd., 2008)

  26. S Kajita, H Hirukawa, K Harada and K Yokoi, Introduction to humanoid robotics (Springer, 2014)

    Google Scholar 

  27. S Y Nof, Springer handbook of automation (Springer-Verlag, 2008)

  28. R Siegwart, I R Nourbakhsh and D Scaramuzza, Introduction to autonomous mobile robots (The MIT Press, Massachusetts, 2004)

    Google Scholar 

  29. J Gerhart, Home automation and wiring (McGraw Hill Professional, 1999)

  30. P J Springer, Military robots and drones: A reference handbook (ABC-CLIO, 2013)

  31. R D Launius and H E McCurdy, Robots in space: Technology, evolution and interplanetary travel (The Johns Hopkins University Press, Baltimore, 2008)

  32. R Malone, Ultimate robot (DK Pub., 2004)

  33. L Pagliarini and H H Lund, AROB, 13th International Symposium on Artificial Life and Robotics (Oita, Japan, 31 January–2 February 2008)

  34. R Hanson, The age of Em: Work, love and life when robots rule the Earth (Oxford University Press, 2016)

  35. S Kernbach, Handbook of collective robotics: Fundamentals and challenges (Pan Stanford Publishing, 2013)

  36. K Stay, D Brandt and D J Christensen, Self-reconfigurable robots. An Introduction (MIT Press, 2010)

    Google Scholar 

  37. K Meruva and Z Bi, Proceedings of the IEEE International Conference on Information and Automation (Ningbo, China, August 2016) pp. 299–304

  38. L Nocks, The robot: The life story of a technology (Greenwood Publishing Group, 2007)

  39. K Akimoto, S Watanabe and M Yano, Pro. Intl. Symposium on Artificial Life and Robotics (1999) Vol. 3, pp. 102–105

  40. R R Brooks, IEEE J. Robot. Autom. RA-2, 14 (1986)

  41. R A Brooks, Neural Comput. 1, 253 (1989)

    Article  Google Scholar 

  42. K Tsujita, A Onat, K Tsuchiya and Y Kawano, Proc. 5th Intl. Symposium on Artificial Life and Robotics (2000) pp. 703–710

  43. K Tsujita, K Tsuchiya, A Onat, S Aoi and M Kawakami, Proc. of the Sixth International Symposium of Artificial Life and Robotics (2001) Vol. 2, pp. 421–426

  44. J J Collins and S A Richmond, Biol. Cybern. 71, 375 (1994)

  45. J J Collins and I Stewart, J. Nonlinear Sci. 3, 349 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  46. C Gehring, S Coros, M Hutter, M Bloesch, M A Hoepflinger and R Siegwart, IEEE International Conference on Robotics and Automation (2013) pp. 3287–3292

  47. Q Cao, A T Van Rijn and I Poulakakis, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2015) pp. 5136–5141

  48. D Owaki and A Ishiguro, Sci. Rep. 7, 1 (2017)

    Article  ADS  Google Scholar 

  49. Y Yang, T Zhang, E Coumans, J Tan and B Boots, Conference on Robot Learning (2022) pp. 773–783

  50. V Tsounis, M Alge, J Lee, F Farshidian and M Hutter, IEEE Robot. Autom. Lett. 5, 3699 (2020)

    Article  Google Scholar 

  51. A H Cohen, P J Holmes and R H Rand, J. Math. Biol. 13, 345 (1982)

    Article  Google Scholar 

  52. R H Rand, A H Cohen and P J Holmes, Neural control of rhythmic movements in vertebrates edited by A H Cohen, S Rossignol and S Grillner (Wiley, New York, 1988) pp. 333–367

    Google Scholar 

  53. K Qiu, H Zhang, Y Lv, Y Wang, C Zhou and R Xiong, IEEE International Conference on Real-time Computing and Robotics (RCAR) (2021) pp. 468–473

  54. T G Deliagina, P E Musienko and P V Zelenin, Curr. Opin. Physiol. 8, 7 (2019)

    Article  Google Scholar 

  55. A Athota, B Caccam, R Kochis, A Ray, G Cauwenberghs and F D Broccard, 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2021) pp. 6703–6706

  56. J Knüsel, A Crespi, J M Cabelguen, A J Ijspeert and D Ryczko, Front. Neurorobot. 14, 604426 (2020)

  57. N Kopell and G B Ermentrout, Commun. Pure Appl. Math. 39, 623 (1986)

    Article  Google Scholar 

  58. N Kopell and G B Ermentrout, Math. Biosci. 89, 14 (1988)

    Google Scholar 

  59. N Kopell and G B Ermentrout, SIAM J. Appl. Math. 50, 1014 (1990)

  60. R Yamapi, J C Ourou and P Woafo, Int. J. Bifurc. Chaos 14, 171 (2004)

    Article  Google Scholar 

  61. P Crotty, D Schult and K Segall, Phys. Rev. E 82, 0119141 (2010)

    Article  Google Scholar 

  62. A H Lewis and I M Raman, J. Physiol. 592, 4825 (2014)

    Article  Google Scholar 

  63. J S Yeomans, Physiol. Behav. 22, 911 (1979)

    Article  Google Scholar 

  64. M Milosavljevic and M Cerf, Int. J. Advert. 27, 381 (2008)

    Article  Google Scholar 

  65. I Blundell et al, Front. Neuroinform. 12, 1 (2018)

    Article  Google Scholar 

  66. R A McDougal et al, J. Comput. Neurosci. 42, 1 (2017)

    Article  Google Scholar 

  67. D T Ngatcha, A A Oumate, A S K Tsafack and S T Kingni, Chaos Theory Appl. 3, 55 (2021)

    Article  Google Scholar 

  68. B Ramakrishnan, L M A Tabejieu, I K Ngongiah, S T Kingni, R T Siewe and K Rajagopal, J. Supercond. Nov. Magn. 34, 2761 (2021)

    Article  Google Scholar 

  69. H Dziubinska, A Paszewski, K Trebacz and T Zawadzki, Physiol. Plant. 57, 279 (1983)

    Article  Google Scholar 

  70. F Patolsky et al, Science 313, 1100 (2006)

    Article  ADS  Google Scholar 

  71. T P Vogels and L F Abbott, J. Neurosci. 25, 10786 (2005)

    Article  Google Scholar 

  72. J C Whittington and R Bogacz, Trends Cogn. Sci. 23, 235 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially funded by the Centre for Nonlinear Systems, Chennai Institute of Technology, India via funding number CIT/CNS/2023/Rp-007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isidore Komofor Ngongiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngongiah, I.K., Vivekanandan, G., Kuiate, G.F. et al. Theoretical investigation of an array of Josephson junction neuron circuits actuating a mechanical leg and the array in mimicking a multi-legged locomotion. Pramana - J Phys 97, 135 (2023). https://doi.org/10.1007/s12043-023-02612-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02612-2

Keywords

PACS

Navigation