Skip to main content
Log in

The persistent, anti-persistent and the Brownian: A toy model for investigating the connection between Hurst exponent and the emergence of oscillatory behaviour

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The analogy between self-similar time series with the given Hurst exponent H and Markovian, Gaussian stochastic processes with multiplicative noise and entropic index q (Borland, PRE 57, 6634 (1998)) allows us to explain the empirical results reported in Pavithran et al, EPL 129, 24004 (2020) and Pavithran et al, Sci. Rep. 10, 1 (2020) with the help of the properties of the non-extensive entropy \( S_{q} \) of index q: a dominant oscillating mode arises as H goes to zero in many different systems and its amplitude is proportional to \({1}/{H^2} \). Thus, a decrease of H acts as the precursor of large oscillations of the state variable, which corresponds to catastrophic events in many problems of practical interest. In contrast, if H goes to 1 then the time series is strongly intermittent, fluctuations of the state variable follow a power law, whose exponent depends on H, and exceedingly large events are basically unpredictable. These predictions agree with observations in problems of aeroacoustics, aeroelasticity, electric engineering, hydrology, laser physics, meteorology, plasma physics, plasticity, polemology, seismology and thermoacoustics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L D Landau and E M Lifshitz, Fluid mechanics (Pergamon, Oxford, 1959)

    Google Scholar 

  2. S Candel, D Durox, Th Schuller, J F Bourgouin and J P Moeck, Annu. Rev. Fluid Mech. 46, 147 (2014)

  3. I Pavithran, V R Unni, A J Varghese, R I Sujith, A Saha, N Marwan and J Kurths, EPL 129, 24004 (2020)

    Article  ADS  Google Scholar 

  4. H E Hurst, Hydrol. Sci. J. 1, 13 (1956)

    Google Scholar 

  5. B Qian and K Rasheed, Hurst exponent and financial market predictability, Proceedings of the 2nd IASTED International Conference on Financial Engineering and Applications (Cambridge, MA, USA, 2004) pp. 203–209

  6. I Pavithran, V R Unni, A J Varghese, D Premraj, R I Sujith, C Vijayan, A Saha, N Marwan and J Kurths, Sci. Rep. 10, 17405 (2020)

    Article  ADS  Google Scholar 

  7. L Arnold, N S Namachchivaya and K R Schenck-Hoppé, Int. J. Bifurc. Chaos 6, 1947 (1996)

    Article  Google Scholar 

  8. P De Michelis and G Consolini, J. Geophys. Res. 120, 2691 (2015)

    Article  Google Scholar 

  9. V Nair and R I Sujith, J. Fluid Mech. 747, 635 (2014)

    Article  ADS  Google Scholar 

  10. B A Carreras, D E Newman, I Dobson and A B Poole, IEEE Trans. Circuits Systems I: Regular Papers 51, 1733 (2004)

    Article  Google Scholar 

  11. A J Klimas, V M Uritsky and M Paczuski, Self-organized criticality and intermittent turbulence in an MHD current sheet with a threshold instability, arXiv:astro-ph/0701486 (8 Jan 2009)

  12. B A Carreras, B Ph van Milligen, M A Pedrosa, R Balbin, C Hidalgo, D E Newman, E Sanchez, M Frances, I Garcia-Cortes, J Bleuel, M Endler, C Riccardi, S Davies, G F Matthews, E Martines, V Antoni, A Latten and T Klinger, Phys. Plasmas 5, 3632 (1998)

    Article  ADS  Google Scholar 

  13. N Vianello, G Regnoli, V Antoni, V Carbone, E Martines, G Serianni and P Veltri, Electrostatic turbulence intermittency driven by MHD relaxation phenomena in a RFP plasma, Proc. 28th Conf. Contr. Fus. Plasma Phys. (Funchal, 18–22 June 2001), ECA 25A, 1689 (2001)

  14. M P Juniper and R I Sujith, Annu. Rev. Fluid Mech. 50, 661 (2018)

    Article  ADS  Google Scholar 

  15. G A Flandro and J Majdalani, AIAA J. 41, 485 (2003)

    Article  ADS  Google Scholar 

  16. E Boujo, C Bourquard, Y Xiong and N Noiray, J. Sound Vib. 464, 114981 (2020)

    Article  Google Scholar 

  17. M H Hansen, Wind Energy 10, 551 (2007)

    Article  ADS  Google Scholar 

  18. J P Swatzel, A partial differential equation to model the Tacoma Narrows Bridge failure, https://scholarworks.lib.csusb.edu/etd-project (2004)

  19. S Barani, C Mascandola, E Riccomagno, D Spallarossa, D Albarello, G Ferretti, D Scafidi, P Augliera and M Massa, Nature Sci. Rep. 8, 5326 (2018)

    ADS  Google Scholar 

  20. B A Carreras, D E Newman, I Dobson and A B Poole, Initial evidence for self-organized criticality in electric power system blackouts, Proceedings of Hawaii International Conference on System Sciences (Maui, Hawaii, 4–7 January 2000)

  21. M S Bharathi, M Lebyodkin, G Ananthakrishna, C Fressengeas and L P Kubin, Acta Material. 50, 2813 (2002)

    Article  ADS  Google Scholar 

  22. N Noiray and B Schuermans, Int. J. Non-Linear Mech. 50, 152 (2013)

    Article  ADS  Google Scholar 

  23. T Hummel, F Berger, B Schuermans and Th Sattelmayer, Thermoacoustic instabilities in gas turbines and rocket engines: Industry meets academia (GTRE-038) (Munich, Germany, May 30–June 02, 2016)

  24. N Noiray and B Schuermans, Proc. R. Soc. A 469, 20120535 (2013)

    Article  ADS  Google Scholar 

  25. M R Bothien, N Noiray and B Schuermans, J. Eng. Gas Turbines Power 137, 061505 (2015)

    Article  Google Scholar 

  26. M Bauerheim, F Nicoud and T Poinsot, Phys. Fluids 28, 021303 (2016)

    Article  ADS  Google Scholar 

  27. M Lee, K T Kim, V Gupta and L K B Li, Proc. Combustion Inst. (2020), https://doi.org/10.1016/j.proci.2020.06.057

  28. H Haken, Synergetics (Springer-Verlag, Berlin, 2004)

    Book  MATH  Google Scholar 

  29. I A van de Leemput, M Wichers, A O J Cramer, D Borsboom, F Tuerlinckx, P Kuppens, E H van Nes, W Viechtbauer, E J Giltay, S H Aggen, C Derom, N Jacobs, K S Kendlerg, H L J van der Maas, M C Neale, F Peeters, E Thiery, P Zachar and M Scheffer, PNAS 111, 87 (2014)

    Article  ADS  Google Scholar 

  30. R J Geller, Geophys. J. Int. 131, 425 (1997)

    Article  ADS  Google Scholar 

  31. A Yilmaz, Sci. Technol. Adv. Mater. 12, 063001 (2011)

    Article  Google Scholar 

  32. A C Iliopoulos and E C Aifantis, Physica A 498, 17 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. D Jovanovic, T Jovanovic, A Mejía, J Hathaway and E Daly, Hydrol. Earth Syst. Sci. 22, 3551 (2018)

    Article  ADS  Google Scholar 

  34. N V Sarlis, E S Skordas, A Mintzelas and K A Papadopoulou, Nature Sci. Rep. 8, 9206 (2018)

    ADS  Google Scholar 

  35. L Juan and C Yong, Acta Seismol. Sinica 14, 2, 148 (2001)

    Article  Google Scholar 

  36. S Shadkhoo, F Ghanbarnejad, G R Jafari and M R R Tabar, Cent. Eur. J. Phys. 7, 620 (2009)

    Google Scholar 

  37. D B de Freitas, G S França, T M Scheerer, C S Vilar and R Silva, On a possible fractal relationship between the Hurst exponent and the non-extensive Gutenberg-Richter index, arXiv:1707.09018v1 [physics.geo-ph] 25(2017)

  38. B Ph van Milligen, B A Carreras, M A Pedrosa, R Balbín, C Hidalgo, D E Newman, E Sánchez, I García-Cortés, J Bleuel, M Endler, C Riccardi, S Davies, G F Matthews, E Martines, V Antoni, A Latten and T Klinger, Long-range correlations and universality in plasma edge turbulence THP2/07, Proc. IAEA Conf. Nucl. Fus. (1998)

    Google Scholar 

  39. B Mandelbrot and J W Van Ness, SIAM Rev. 10, 422 (1968)

  40. W H Deng and E Barkai, PRE 79, 011112 (2009)

    Article  ADS  Google Scholar 

  41. L Borland, Phys. Rev E 57, 6634 (1998)

    Article  ADS  Google Scholar 

  42. M Gilmore, C X Yu, T L Rhodes and W A Peebles, Phys. Plasmas 9, 1312 (2002)

    Article  ADS  Google Scholar 

  43. L J Chen, K E Bassler, J L McCauley and G H Gunaratne, PRE 95, 042141 (2017)

    Article  ADS  Google Scholar 

  44. G A Prieto, P M Shearer, F L Vernon and D Kilb, J. Geophys. Res. 109, B08310 (2004)

    ADS  Google Scholar 

  45. E G Pavlos, O E Malandraki, O V Khabarova, L P Karakatsanis, G P Pavlos and G Livadiotis, Entropy 21, 648 (2019)

    Article  ADS  Google Scholar 

  46. B B Mandelbrot and J R Wallis, Water Resource Res. 4, 909 (1968)

    Article  ADS  Google Scholar 

  47. G A Casas, F D Nobre and E M F Curado, Phys. Rev. E 86, 061136 (2012)

    Article  ADS  Google Scholar 

  48. R S Wedemann, A R Plastino and C Tsallis, Phys. Rev. E 94, 062105 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  49. C Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  50. R Dengler, Another derivation of generalized Langevin equations, arXiv preprint arXiv:1506.02650 (2015)

  51. H Risken, The Fokker–Planck equation (Springer, Berlin, 1989)

    MATH  Google Scholar 

  52. C Tsallis, R S Mendes and A Plastino, Physica A 261, 534 (1998)

    Article  ADS  Google Scholar 

  53. A R Plastino and A Plastino, Physica A 222, 347 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  54. T Wada and A M Scarfone, Phys. Lett. A 335, 351 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  55. L D Landau and E M Lifshitz, Statistical physics (Pergamon, Oxford, 1959)

    MATH  Google Scholar 

  56. E Vives and A Planes, PRL 88, 020601 (2002)

    Article  ADS  Google Scholar 

  57. A Di Vita, Eur. Phys. J. 92, 255 (2019)

    Article  ADS  Google Scholar 

  58. M E J Newman, Contemp. Phys. 46, 323 (2005)

    Article  ADS  Google Scholar 

  59. S Basu and A Dasgupta, Theor. Prob. Appl. 41, 210 (1997)

    Article  Google Scholar 

  60. D Stosic and D Stosic and T Stosic, Nonextensive triplets in stock market indices, arXiv:1901.07721v1 [q-fin.ST] (23 Jan 2019)

  61. Y A Kuznetsov, Elements of applied bifurcation theory (Springer, New York, 1998)

    MATH  Google Scholar 

  62. Th S Doan, M Engel, J S W Lamb and M Rasmussen, Nonlinearity 31, 4567 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  63. P G Drazin and W H Reid, Hydrodynamic stability (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  64. Y Kuramoto, Chemical oscillations, waves and turbulence (Springer Science & Business Media, 2012) Vol. 19

  65. S Etikyala and R I Sujith, Chaos 27, 023106 (2017)

    Article  ADS  Google Scholar 

  66. G Ananthakrishna, Pramana – Phys. 64, 343 (2005)

    Article  ADS  Google Scholar 

  67. Z Peterson, Unstable emission from random lasers, Proc. IEEE 2019 Summer Topicals (Ft. Lauderdale, FL, USA)

  68. R Könenkamp and R C Word, Unstable emission from random lasers, Proc. of the 8th IEEE Photonics Society Conference (2019), https://www.nwengineeringllc.com/resources/unstable-emission-from-random-lasers.pdf

  69. M P Kennedy, IEEE Trans. Circuits Syst. 40, 657 (1993)

    Article  Google Scholar 

  70. J L Moiola and L O Chua, Int. J. Bifurc. Chaos 9, 295 (1999)

    Article  Google Scholar 

  71. J B Titus, B Alexander and J A Johnson III, J. Appl. Phys. 113, 163303 (2013)

    Article  ADS  Google Scholar 

  72. J R Gomez-Solano and F J Sevilla, J. Stat. Mech. 063213 (2020), https://doi.org/10.1088/1742-5468/ab8553

  73. E Cadenas, R Campos-Amezcua, W Rivera, M A Espinosa-Medina, A R Méndez-Gordillo, E Rangel and J Tena, Energy Sci. Eng. 7, 361 (2019)

    Article  Google Scholar 

  74. T Zhou, J Lu, B Li and Y Tan, IEEE Access 8, 79935 (2020)

    Article  Google Scholar 

  75. Y Yagi, L G Bruskin, M Watanabe, T Solzonella, T Shimada, H Sakakita and H Koguchi, J. Plasma Fusion Res. Ser. 2, 180 (1999)

    Google Scholar 

  76. P H Diamond, Self organized criticality, https://fapp.ucsd.edu/Diamond%20SOC%20APTWG%202016%20(3).pdf (2016)

  77. P Cirillo and N N Taleb, Physica A 452, 29 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  78. P Bak, C Tang and K Wiesenfeld, PRL 59, 381 (1987)

    Article  ADS  Google Scholar 

  79. T Chang, IEEE Trans. Plasma Sci. 20, 691 (1992)

    Article  ADS  Google Scholar 

  80. A C Iliopoulos, G P Pavlos, E E Papadimitriou and D S Sfiris, Int. J. Bifurc. Chaos 22, 1250224 (2012)

    Article  Google Scholar 

  81. V M Uritsky, M Paczuski, J M Davila and S I Jones, PRL 99, 025001 (2007)

    Article  ADS  Google Scholar 

  82. M Paczuski, S Boettcher and M Baiesi, PRL 95, 181102 (2005)

    Article  ADS  Google Scholar 

  83. V Carbone, R Cavazzana, V Antoni, L Sorriso-Valvo, E Spada, G Regnoli, P Giuliani, N Vianello, F Lepreti, R Bruno, E Martines and P Veltri, Europhys. Lett. 58, 349 (2002)

    Article  ADS  Google Scholar 

  84. Y Lee, Ch Chen, Ch Lin and S Chi, Chaos Solitons Fractals 45, 125 (2012)

  85. Lavička, Hynek and Jiří Kracík, Physica A 545, 123821 (2020)

    Article  Google Scholar 

  86. N V Sarlis, E S Skordas and P A Varotsos, PRE 82, 021110 (2010)

    Article  ADS  Google Scholar 

  87. P Bhattacharya, B K Chakrabarti, Kamal and D Samanta, Fractal models of earthquake dynamics, in: Reviews of nonlinear dynamics and complexity edited by Heinz Georg Schuster (Wiley-VCH, 2009) Vol. 2, pp. 107–150

  88. I D Petersen, Cooperation Conflict XXVI, 1 (1991)

  89. A Di Vita, Eur. Phys. J. B 93, 27 (2020)

    Article  ADS  Google Scholar 

  90. A Clauset, Sci. Adv. 4, 2 (2018)

    Article  Google Scholar 

  91. L F Richardson, J. R. Stat. Soc. 107, 242 (1944)

    Google Scholar 

  92. L F Richardson, Nature 155, 610 (1945)

    Article  ADS  Google Scholar 

  93. L F Richardson, J. Am. Stat. Assoc. 43, 523 (1948)

    Article  Google Scholar 

  94. L Cederman, Am. Polit. Sci. Rev. 97, 135 (2003)

    Article  Google Scholar 

  95. G Martelloni, F Di Patti and U Bardi, Pattern analysis of world conflicts over the past 600 years, arXiv:1812.08071 (2018)

  96. J A Friedman, J. Conflict Resolut. 59, 1216 (2015)

    Article  Google Scholar 

  97. R Kidson, K S Richards and P A Carling, Power-law extreme flood frequency, in: Fractal analysis for natural hazards edited by G Cello and B D Malamud (Geological Society, London, Special Publications, 2006) Vol. 261, p. 141

  98. M J Nigrini and S J Miller, Math. Geol. 39, 469 (2007)

    Article  Google Scholar 

  99. P Hubert, Hydrol. Sci. J. 46, 897 (2001)

    Article  Google Scholar 

  100. A A López-Lambraño, C Fuentes, A A López-Ramos, J Mata-Ramírez and M López-Lambraño, Atmósfera 31, 199 (2018)

    Article  Google Scholar 

  101. L Minati, M Frasca, P Oświȩcimka, L Faes and S Drożdż, Chaos 27, 073113 (2017)

    Article  ADS  Google Scholar 

  102. M L Lyra and C Tsallis, PRL 80, 53 (1998)

    Article  ADS  Google Scholar 

  103. C Meneveau and K R Sreenevasan, Nucl. Phys. B (Proc. Suppl.) 2, 49 (1987)

  104. E Leonardis, L Sorriso-Valvò, F Valentini, S Servidio, F Carbone and P Veltri, Phys. Plasmas 23, 022307 (2016)

    Article  ADS  Google Scholar 

  105. C Tsallis, A R Plastino and W M Zheng, Chaos Solitons and Fractals 8, 885 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  106. C Tsallis, Physica A 340, 1 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  107. T Arimitsu and N Arimitsu, PRE 61, 3237 (2000)

    Article  ADS  Google Scholar 

  108. S M D Queiròs, L G Moyano, J de Souza and C Tsallis, Eur. Phys. J. B 55, 161 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  109. L F Burlaga, Physica A 356, 375 (2005)

    Article  ADS  Google Scholar 

  110. A F Tuck and S J Hovde, Geophys. Res. Lett. 26, 1271 (1999)

    Article  ADS  Google Scholar 

  111. V Carbone, L Sorriso-Valvo, E Martines, V Antoni and P Veltri, PRE 62, R49 (2000)

    Article  ADS  Google Scholar 

  112. S Lepri, S Cavalieri, G Oppo and D S Wiersma, Phys. Rev. A 75, 063820 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Useful discussions with Prof. R I Sujith, Department of Aerospace Engineering, IIT Madras, Chennai and his warm encouragement are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Di Vita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Vita, A. The persistent, anti-persistent and the Brownian: A toy model for investigating the connection between Hurst exponent and the emergence of oscillatory behaviour. Pramana - J Phys 97, 128 (2023). https://doi.org/10.1007/s12043-023-02606-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02606-0

Keywords

PACS No

Navigation