Skip to main content
Log in

A novel formula of equilibrium bond distance of the quantum oscillator with temperature dependence in diatomic molecules

  • Rapid Communication
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Morse potential, a basic interaction potential used in the study of the non-harmonic oscillations between atoms and molecules, can be used for studying diatomic molecules. The full description of Morse interaction can be done using three parameters, and one important parameter of Morse potential is the bond distance of the equilibrium state of the potential. This parameter describes the equilibrium situation of the interaction itself. In this communication, we aim to derive a novel formula for the previous equilibrium distance. We derive the formula depending on the basic principle of the integral equation theory of the distribution functions. Depending on the derived formula, we find that the bond distance of the equilibrium state is a function of the temperature of the system via a nonlinear relationship. Also, we find that the bond distance of the equilibrium state is a function of the other two parameters of the Morse potential. Based on the derived formula, we found that the bond distance of the equilibrium state increases slowly with the absolute temperature of the system. Also, we calculate this bond distance for two diatomic molecules: the first one is the hydrogen chloride molecule, and the other is the hydrogen fluoride molecule. The bond distance of the equilibrium state, which are calculated in this work, are reliable and comparable to the experimental results of this distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. F A Abdel-Wahab, A A Shama, M Abdel-Baki and F El-Diasty. J. Alloy. Compd. 513, 172 (2012), https://doi.org/10.1016/j.jallcom.2011.10.014

    Article  Google Scholar 

  2. K Pussi, B Barbiellini, K Ohara, H Yamada, J Dwivedi, A Bansil, A Gupta and S Kamali, J. Phys. Condens. Matter. 33, 39 (2021), https://doi.org/10.1088/1361-648X/ac1238

    Article  Google Scholar 

  3. M Beglari, N Goudarzi, D Shahsavani, M Arab Chamjangali and Z Mozafari, Struct. Chem. 31, 1481 (2020), https://doi.org/10.1007/s11224-020-01505-z

    Article  Google Scholar 

  4. F S Carvalho and J P Braga, J. Brazil. Chem. Soc. 32, 2257 (2021), https://doi.org/10.21577/0103-5053.20210117

    Article  Google Scholar 

  5. O Akinlade, A M Umar and L A Hussain, Pramana – J. Phys. 47, 271 (1996) https://doi.org/10.1007/BF02848528

    Article  ADS  Google Scholar 

  6. A D Greenhalgh, L D Sanjeewa, P Luszczek, V Maroulas, O Rios and D J Keffer, Front. In. Mater. 8 (2021), https://doi.org/10.3389/fmats.2021.797418

  7. M van Dung, T T Dung, T D Quynh, N M Tuan, N van Yen and L T Vinh, J. Phys. Conf. Ser. 2070, 1 (2021), https://doi.org/10.1088/1742-6596/2070/1/012064

    Article  Google Scholar 

  8. A Y Galashev, J. Phys. Condens. Matter. 33, 49 (2021), https://doi.org/10.1088/1361-648X/ac26fa

    Article  Google Scholar 

  9. M Al-Raeei, BMC. Chem. 16, 22 (2022), https://doi.org/10.1186/s13065-022-00811-3

    Article  Google Scholar 

  10. S Zhou, X Zhang, X Xiang and H Xiang, Chin. J. Chem. Phys. 17, 38 (2004)

    Google Scholar 

  11. T Miyata and S Miyazaki, Chem. Phys. Lett. 658, 224 (2016), https://doi.org/10.1016/j.cplett.2016.06.049

    Article  ADS  Google Scholar 

  12. L A Aguirre-Manzo and P González-Mozuelos, J. Phys. Condens. Matter 33, 27 (2021), https://doi.org/10.1088/1361-648X/abfe95

    Article  Google Scholar 

  13. J L Arauz-Lara, Colloidal fluids, in: Fluids, colloids and soft materials: An introduction to soft matter physics (Wiley, 2018) 187–202, https://doi.org/10.1002/9781119220510.ch11

  14. A V Filippov, V V Reshetnyak, A N Starostin, I M Tkachenko and V E Fortov. JETP. Lett. 110, 659 (2019), https://doi.org/10.1134/S0021364019220065

    Article  ADS  Google Scholar 

  15. Y V Kalyuzhnyi, I Nezbeda and P T Cummings, Soft Matter 17, 3513 (2021), https://doi.org/10.1039/d0sm02284e

    Article  ADS  Google Scholar 

  16. M Lukšič, B Hribar-Lee and O Pizio, Mol. Phys. 109, 893 (2011), https://doi.org/10.1080/00268976.2011.558029

    Article  ADS  Google Scholar 

  17. C Wu, D Y C Chan and R F Tabor, J. Colloid Interface Sci. 426, 80 (2014), https://doi.org/10.1016/j.jcis.2014.03.023

    Article  ADS  Google Scholar 

  18. O Pizio, Z Sokołowska and S Sokołowski, Condens. Matter Phys. 14, 1 (2011), https://doi.org/10.5488/CMP.14.13601

    Article  Google Scholar 

  19. M Al-Raeei, The use of classical and quantum theoretical Physics methods in the study of complex systems and their applications in condensed matter Physics and quantum information theory (Damascus, the Syrian Arab Republic, 2021).

  20. M Al-Raeei, Heliyon, 8, 4 (2022), https://doi.org/10.1016/j.heliyon.2022.e09328

    Article  Google Scholar 

  21. M Al-Raeei, Res. In. Chem. 4, 100296 (2022), https://doi.org/10.1016/j.rechem.2022.100296

    Article  Google Scholar 

  22. X Wang, W Gonçalves, D Lacroix, M Isaiev, S Gomès and K Termentzidis, J. Phys. Condens. Matter 34, 30 (2022), https://doi.org/10.1088/1361-648X/ac664b

    Article  Google Scholar 

  23. K Pussi, D V Louzguine-Luzgin, J Nokelaineni, B Barbiellini, V Kothalawala K Ohara, H Yamada, A Bansil and S Kamali, J. Phys. Condens. Matter 34, 28 (2022), https://doi.org/10.1088/1361-648X/ac6a9a

    Article  Google Scholar 

  24. Y D Fomin, V N Ryzhov and E N Tsiok, J. Phys. Condens. Matter 31, 31 (2019), https://doi.org/10.1088/1361-648X/ab1df6

    Article  Google Scholar 

  25. M Al-Raeei, J. Phys. Condens. Matter 34, 28 (2022), https://doi.org/10.1088/1361-648X/ac6a9b

    Article  Google Scholar 

  26. F A Celik and E T Korkmaz, Pramana – J. Phys. 96, 1 (2022), https://doi.org/10.1007/s12043-021-02285-9

    Article  Google Scholar 

  27. Y Lu, F Zheng, W Yang, W Kang, Z Li, C Wang, Zhuowei Gu, Fuli Tan, Jianheng Zhao, Cangli Liu, Chengwei Sun and P Zhang, J. Phys. Condens. Matter 32, 40 (2020), https://doi.org/10.1088/1361-648X/ab9a7b

    Article  Google Scholar 

  28. H S Alqannas and S Abdel-Khalek, Opt. Quantum Electron. 51, 50 (2019)

    Article  Google Scholar 

  29. S A Ansary and P Mishra, AIP. Conf. Proc. 2352 (2021), https://doi.org/10.1063/5.0052787

  30. S V G Menon, Condens. Matter 6, 1 (2021), https://doi.org/10.3390/condmat6010006

    Article  Google Scholar 

  31. J A Hernando and L Blum, J. Phys. Condens. Matter 14(46), 11999 (2002), https://doi.org/10.1088/0953-8984/14/46/309

    Article  ADS  Google Scholar 

  32. M Pérez-Molina, M F Pérez-Polo, J G Chica and E F Varó, Fluid Phase Equilb. 546, 113124 (2021), https://doi.org/10.1016/j.fluid.2021.113124

    Article  Google Scholar 

  33. R E Kinani, S El-Moudny, A Derouiche, M Benhamou and N Barka, Chin. J. Phys. 71, 112 (2021), https://doi.org/10.1016/j.cjph.2020.11.012

    Article  Google Scholar 

  34. A Kumar, B Kumar Mandal and P Mishra, J. Phys. Conf. Ser. 765(1), 012022 (2016), https://doi.org/10.1088/1742-6596/765/1/012022

    Article  Google Scholar 

  35. A Martín-Molina, M Quesada-Pérez and R Hidalgo-Álvarez, Structure and functional properties of colloidal systems (CRC Press, Boca Raton, 2009) pp. 63–76, https://doi.org/10.1201/9781420084474

  36. S Zhou, Theor. Chem. Acco. 124(3–4), 279 (2009), https://doi.org/10.1007/s00214-009-0609-x

    Article  Google Scholar 

  37. M Al-Raeei, Res. Chem. 4, 100560 (2022), https://doi.org/10.1016/j.rechem.2022.100560

    Article  Google Scholar 

  38. S Lin, M Oettel, J M Häring, R Haussmann, M Fuchs and G Kahl, Phys. Rev. Lett. 127(8), 085501 (2021), https://doi.org/10.1103/PhysRevLett.127.085501

    Article  ADS  Google Scholar 

  39. J A Alonso and N H March, Phys. Chem. Liq. 50(1), 131 (2012), https://doi.org/10.1080/00319104.2010.543904

    Article  Google Scholar 

  40. E Lomba, C Bores, R Notario, and V Sánchez-Gil, J. Phys. Condens. Matter 28, 344006 (2016), https://doi.org/10.1088/0953-8984/28/34/344006

    Article  Google Scholar 

  41. M Al-Raeei, Can. J. Phys. (2023), https://doi.org/10.1139/cjp-2022-0250

    Article  Google Scholar 

  42. S Kournopoulos, M S Santos, S Ravipati, A J Haslam, G Jackson, I G Economou and A Galindo, J. Phys. Chem. B 126(47), 9821 (2022), https://doi.org/10.1021/acs.jpcb.2c03915

    Article  Google Scholar 

  43. F Smain and F Ould-Kaddour, Colloids Polym. Sci. 288(18), 1731 (2010), https://doi.org/10.1007/s00396-010-2300-0

    Article  Google Scholar 

  44. Y Duda, O Pizio and S Sokołowski, Czech. J. Phys. 49(4), 515 (1999), https://doi.org/10.1023/A:1022873010154

    Article  ADS  Google Scholar 

  45. G M Rodríguez-Liñán and M Heinen, J. Comp. Phys. 394, 232 (2019), https://doi.org/10.1016/j.jcp.2019.05.047

    Article  ADS  Google Scholar 

  46. A A Anikeev, Y A Bogdanova and S A Gubin, Phys. Proc. 72, 318 (2015), https://doi.org/10.1016/j.phpro.2015.09.102

    Article  ADS  Google Scholar 

  47. M B Khedr and S M Osman, AIP. Conf. Proc. 1370, 173 (2011), https://doi.org/10.1063/1.3638099

    Article  ADS  Google Scholar 

  48. M Moinuddin and M Tripathy, Macromol. 55(20), 9312 (2022), https://doi.org/10.1021/acs.macromol.2c01243

    Article  ADS  Google Scholar 

  49. F S Carvalh and J P Braga, J. Mol. Liq. 367, 120504 (2022), https://doi.org/10.1016/j.molliq.2022.120504

    Article  Google Scholar 

  50. I P Omelyan, I M Mryglod, R Folk and W Fenz, Phys. Rev. E 69(6), 12 (2004), https://doi.org/10.1103/PhysRevE.69.061506

    Article  Google Scholar 

  51. M Al-Raeei, Chem. Therm. Ther. Anal. 6, 100046 (2022), https://doi.org/10.1016/j.ctta.2022.100046

    Article  Google Scholar 

  52. P M Morse, Phys. Rev. 57, 64 (1929)

    Google Scholar 

  53. A I Chichinin, C Maul and K Gericke, J. Chem. Phys. 124, 22 (2006), https://doi.org/10.1063/1.2198831

    Article  Google Scholar 

  54. G S Denisov and I G Denisov, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 262, 120111 (2021), https://doi.org/10.1016/j.saa.2021.120111

    Article  Google Scholar 

  55. H Fan, B Chen and Y Fan, Phys. Lett. A 213(5–6), 226 (1996), https://doi.org/10.1016/0375-9601(96)00138-7

    Article  ADS  MathSciNet  Google Scholar 

  56. S Abdel-Khalek, E M Khalil, H Alotaibi, S M Abo-Dahab, E E Mahmoud, M Higazy and M Marin, Symmetry 13(11), 2188 (2021), https://doi.org/10.3390/sym13112188

    Article  ADS  Google Scholar 

  57. J A Coxon and P G Hajigeorgiou, J. Quant. Spectrosc. Radiat. Transf. 151, 133 (2015), https://doi.org/10.1016/j.jqsrt.2014.08.028

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwan Al-Raeei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Raeei, M., El-Daher, M.S., Bouzenada, A. et al. A novel formula of equilibrium bond distance of the quantum oscillator with temperature dependence in diatomic molecules. Pramana - J Phys 97, 144 (2023). https://doi.org/10.1007/s12043-023-02599-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02599-w

Keywords

PACS Nos

Navigation