Skip to main content
Log in

Effects of nuclear side reactions on fusion triple product and saddle point condition in the spherical torus

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this study, the behaviour of the triple product (\(n_i\tau _E T_i\)) and height of the saddle point are investigated on the basis of the particle and power balance equations by considering primary reaction and side reactions among all product and reactant species in a spherical torus nuclear fusion reactor. For this purpose, a set of equations are coupled and solved numerically. Ignition capability is investigated and compared for different types of side reactions and other features like, the ratio between particle and energy confinement time and hot ion modes. Finally, the results are compared with each other to improve future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G L Kulcinski and H H Schmitt, Fus. Technol. 21, 2221 (1992)

    Article  ADS  Google Scholar 

  2. A J Creely and the SPARC Team, J. Plasma Phys. 86, 865860502 (2020)

  3. S M Motevalli and F Fadaei, Z. Naturforsch. A 70, 79 (2015)

    Article  ADS  Google Scholar 

  4. H Shimotohno, S Nishio and S Kondo, Fusion Eng. Des. 69, 675 (2003)

    Article  Google Scholar 

  5. F N Flakus, Fusion safety (IAEA, 1983)

  6. G H Miley, Nucl. Instrum. Methods Phys. Res. B 271, 197 (1988)

    Article  Google Scholar 

  7. M Zucchetti and L E Sugiyama, J. Phys. Conf. Ser. 41, 055 (2006)

  8. A Y Chirkov, AIP Conf. Proc. 2171, 2171 (2019)

    Google Scholar 

  9. G C Vlases and L C Steinhauer, Report of NASA lunar energy enterprise case study task force (Langley Research Center, NASA, 1989)

  10. S V Ryzhkov, AIP Conf. Proc. 2318, 090008 (2021)

    Article  Google Scholar 

  11. A E Dabiri, Nucl. Instrum. Methods: Phys. Res. B 271, 71 (1988)

    Article  Google Scholar 

  12. A A Harms, K F Schoepf and D R Kingdon, Principles of fusion energy: An introduction to fusion energy for students of science and engineering (World Scientific, 2000)

    Book  Google Scholar 

  13. S Bingren, Plasma Sci. Technol. 7, 2767 (2005)

    Article  Google Scholar 

  14. S Koike, T Takahashi, N Mizuguchi and O Mitarai, Fusion Eng. Des. 136, 111 (2018)

    Article  Google Scholar 

  15. F Sharifi, S M Motevalli and F Fadaei, Phys. Scr. 96, 095601 (2021)

    Article  ADS  Google Scholar 

  16. J D Galambos and Y K M Peng, Fus. Technol. 19, 31 (1991)

    Article  ADS  Google Scholar 

  17. S V Ryzhkov, Phys. At. Nucl. 83, 1434 (2020)

    Article  Google Scholar 

  18. B Khosrowpour and N Nassiri-Mofakham, J. Fusion Energy 35, 513 (2016)

    Article  Google Scholar 

  19. G M McCracken, G McCracken and P Stott, Fusion: The energy of the universe (Academic Press, 2005)

    Google Scholar 

  20. G A O Xiang, T Zhang, W U Muquan, L I Guoqiang, Z E N G Long and EAST Team and others, Plasma Sci. Technol. 23, 092001 (2021)

  21. S M Motevalli and F Fadaei, Int. J. Mod. Phys. E 21, 1250078 (2012)

    Article  ADS  Google Scholar 

  22. D Petkow, G Herdrich, R Laufer, R Gabrielli and O Zeile, Trans. Jpn. Soc. Aeronaut. Space Sci. 7, Pb_59 (2009)

  23. J R McNally Jr, Nucl. Technol. 2, 9 (2012)

    ADS  Google Scholar 

  24. R Gabrielli, G Herdrich, H P Röser, S Haid, M Heyn and D Petkow, 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 2, 3716 (2012)

    Google Scholar 

  25. S M Motevalli and F Fadaei, Pramana – J. Phys. 86, 837 (2016)

    Article  ADS  Google Scholar 

  26. O Mitarai, A Hirose and H M Skarsgard, Fus. Technol. 19, 234 (1991)

    Article  ADS  Google Scholar 

  27. J P Freidberg, Plasma physics and fusion energy (Cambridge University Press, 2008)

  28. O Mitarai, Nuclear Reactors, Nuclear Fusion and Fusion Engineering, 405 (2009)

  29. E Rebhan, U Vieth, D Reiter and G H Wolf, Nucl. Fusion 36, 264 (1996)

    Article  ADS  Google Scholar 

  30. A Loarte, B Lipschultz, A S Kukushkin, G F Matthews, P C Stangeby, N Asakura, G F Counsell, G Federici, A Kallenbach, K Krieger and A Mahdavi, Nucl. Fusion 47, S203 (2007)

    Article  Google Scholar 

  31. M A Jakobs, Fusion energy: Burning questions, Ph.d. Thesis (Technische Universiteit Eindhoven, 2016)

  32. F Fadaei and S M Motevalli, Mosc. Univ. Phys. Bull. 72, 535 (2017)

  33. W A Fowler, G R Caughlan and B A Zimmerman, Annu. Rev. Astron. Astrophys. 13, 69 (1975)

    Article  ADS  Google Scholar 

  34. S M Motevalli, T Mohsenpour and N Dashtban, Eur. Phys. J. Plus 131, 1 (2016)

    Article  Google Scholar 

  35. D Petkow, R A Gabrielli, G Herdrich, R Laufer and H P Röser, Fusion Eng. Des. 87, 30 (2012)

    Article  Google Scholar 

  36. O Mitarai, S Hirose and H M Skarsgard, Fus. Technol. 16, 197 (1989)

    Article  ADS  Google Scholar 

  37. G Van Oost and E Rebhan, Fusion Sci. Technol. 53, 16 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Motevalli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajablou, L., Motevalli, S.M. & Fadaei, F. Effects of nuclear side reactions on fusion triple product and saddle point condition in the spherical torus. Pramana - J Phys 97, 115 (2023). https://doi.org/10.1007/s12043-023-02585-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02585-2

Keywords

PACS Nos

Navigation