Skip to main content
Log in

Double-diffusive bioconvection effects on multi-slip peristaltic flow of Jeffrey nanofluid in an asymmetric channel

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Due to the numerous uses of nanofluids in industry and nanotechnology, scientists and engineers have given special attention to the subject of nanofluid mechanics. In the realm of fluid mechanics, it is a considerably more interesting research topic. Motivated by its useful applications in the rheological modelling of many important liquids, we seek to demonstrate the Jeffrey nanofluid model. The intention is to show the effects of multi-slip boundary condition of peristaltic flow in an asymmetric channel in the presence of viscous dissipation and bioconvection. Double diffusive convective flow is saturated with Jeffrey nanofluid containing gyrotatic micro-organism. The dimensional governing equations are converted into non-dimensional forms by suitable dimensionless parameters. The analytical method has been used to obtain solutions for the non-dimensionless system. The impact of different physical characteristics on velocity, temperature, concentration, volume fraction and trapping phenomenon has been analysed through graphs. From the study, it is observed that the velocity slip parameter increases the velocity profile, whereas the velocity profile decreases in the case of bioconvection Rayleigh number, double-diffusive and nanofluid buoyancy ratio, and it is also noticed that the density of the motile micro-organism is lowered by the Peclet number and for bioconvection constant. The present study is useful in academic research, biomedicine and theoretical studies of hemodynamics, and also micro-organisms that are favourable in maintaining the ecosystem and human health. In a few cases, the current analysis shows a substantial agreement with previously published results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T W Latham, Fluid motion in peristaltic pump (Cambridge, MA, 1966)

  2. A H Shapiro, M Y Jaffrin and S L Weinberg, J. Fluid Mech. 17, 799 (1969)

    Article  ADS  Google Scholar 

  3. M Y Jaffrin and A H Shapiro, Annu. Rev. Fluid Mech. 3, 13 (1971)

    Article  ADS  Google Scholar 

  4. A M Abd-Alla, S M Abo-Dahab, E N Thabet and M A Abdelhafez, Alex. Eng. J. (2022), https://doi.org/10.1016/j.aej.2022.11.016

  5. O D Makinde and M R Gnaneswara, Sci. Iran. 26, 2342 (2019)

    Google Scholar 

  6. A M Abd-Alla, E N Thabet and F S Bayones, Sci. Rep. 12, 3348 (2022)

    Article  ADS  Google Scholar 

  7. A M Abd-Alla, S M Abo-Dahab, M A Abdelhafez and E N Thabet, Multidiscip. Model. Mater. Struct. 175, 895 (2021)

    Article  Google Scholar 

  8. F S Bayones, A M Abd-Alla and E N Thabet, Complexity 2021, 9911820 (2021)

    Google Scholar 

  9. T Hayat, S Hina and N Ali, Commun. Nonlinear Sci. 15, 1526 (2010)

    Article  Google Scholar 

  10. A M Abd-Alla, S M Abo-Dahab, M A Abdelhafez and E N Thabet, Sci. Rep. 121, 10608 (2022)

    Article  Google Scholar 

  11. T J Pedley, N A Hill and J O Kessler, J. Fluid Mech. 195, 223 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  12. A Zaib, M M Rashidi and A J Chamkha, J. Porous Media 21, 911 (2018)

    Article  Google Scholar 

  13. K S Noor, Braz. J. Phys. 48, 227 (2018)

    Article  Google Scholar 

  14. S A M Mehryan, F M Kashkooli, M Soltani and K Raahemifar, PLoS ONE 11, 1 (2016)

    Article  Google Scholar 

  15. S K Asha and G Sunitha, Appl. Sci. 1, 1276 (2019)

    Google Scholar 

  16. C L M Navier, Acad. Des Sci. 6, 389 (1827)

    Google Scholar 

  17. T Hayat, M Javed and S Asghar, Numer. Methods Partial Differ. Equ. 27, 1003 (2009)

    Article  Google Scholar 

  18. S Srinivas, R Gayathri and M Kothandapani, Comput. Phys. Commun. (2009)

  19. N S Akbar, T Hayat, S Nadeem and A A Hendi, Int. J. Heat Mass Transf. 54, 1654 (2011)

    Article  Google Scholar 

  20. S Akram, A Razia and F Afzal, Arch. Appl. Mech. 90, 1583 (2020)

    Article  ADS  Google Scholar 

  21. K Asha and K Namrata, J. Biol. Phys. 48, 273 (2022)

    Article  Google Scholar 

  22. A M Abd-Alla, S M Abo-Dahab, M A Abdelhafez and E N Thabet, Waves Random Complex Media (2022), https://doi.org/10.1080/17455030.2022.2084653

  23. K Asha, Int. J. Pure Appl. Math. 23, (2021)

  24. S Akram, M Zafar and S Nadeem, Int. J. Geom. Methods Mod. 15, 1850181 (2018)

    Article  Google Scholar 

  25. S K Asha and G Sunitha, Inform. Med. Unlocked 17, 100272 (2019)

    Article  Google Scholar 

  26. S K Asha and S Giddaiah, Eng. Rep. 2, e12111 (2020)

    Google Scholar 

  27. N S Akbar, S Nadeem and C Lee, Results Phys. 3, 152 (2013)

    Article  ADS  Google Scholar 

  28. K L Jyothi, P Devaki and S Sreenadh, Int. J. Math. Arch. 4, 75 (2013)

    Google Scholar 

  29. Mohamed, Results Phys. 6, 481 (2016)

    Article  Google Scholar 

  30. L Piyu, A Abbasi, E R El-Zahar, W Farooq, Z Hussain, S U Khan, M I Khan, S Farooq, M Y Malik and F Wang, Colloids Interface Sci. Commun. 47, 100593 (2022)

    Article  Google Scholar 

  31. A Shaheena and M I Asjadb, J. Phys. Chem. Solids 122, 210 (2018)

    Article  ADS  Google Scholar 

  32. F S Bayones, A M Abd-Alla and E N Thabet, Waves Random Complex Media (2022), https://doi.org/10.1080/17455030.2021.2019352

  33. S Weerakoon, Int. J. Math. Educ. 25, 277 (1994)

    MathSciNet  Google Scholar 

  34. F B M Belgacem, A A Karaballi and L K Shyam, Math. Probl. Eng. 3, 103 (2003)

    Article  Google Scholar 

  35. G K Watugala, Int. J. Math. Educ. Sci. Technol. 24, 35 (1993)

    Article  MathSciNet  Google Scholar 

  36. G K Watugala, Int. J. Math. Educ. Sci. Technol. 24, 35 (1995)

    Article  MathSciNet  Google Scholar 

  37. H Eltayeb and A Kiliçman, Appl. Math. Sci. 4, 1089 (2010)

    MathSciNet  Google Scholar 

  38. S Srinivas and M Kothandapani, Int. Commun. Heat Mass Transf. 35, 514 (2008)

    Article  Google Scholar 

  39. S Akram, M Athar, K Saeed, A Razia, M Alghamdi and T Muhammad, Nanomaterials 1216, 2736 (2022)

    Article  Google Scholar 

  40. Y Khan, S Akram, A Razia, A Hussain and H A Alsulaimani, Nanomaterials 12, 3037 (2022), https://doi.org/10.3390/nano12173037

    Article  Google Scholar 

  41. M Athar, Y Khan, S Akram, K Saeed, A Alameer and A Hussain, Complexity (2022), https://doi.org/10.1155/2022/7634357

  42. S Akram, M Athar, K Saeed, A Razia and T Muhammad, Waves Random Complex Media (2022), https://doi.org/10.1080/17455030.2022.2134600

  43. S Akram, M Athar and K Saeed, Eur. Phys. J. Spec. Top. 231, (2022)

  44. K Saeed, S Akram, A Ahmad, M Athar, A Razia and T Muhammad, J. Appl. Math. Mech./Z. Angew. Math. Mech. (2022), https://doi.org/10.1002/zamm.202100338

  45. S Akram, M Athar, K Saeed, A Razia and T Muhammad, Math. Meth. Appl. Sci. (2021), https://doi.org/10.1002/mma.7843

  46. S Akram, M Athar and K Saeed, Case Stud. Therm. Eng. 25, 100965 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esraa N Thabet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotnurkar, A.S., Kallolikar, N. & Thabet, E.N. Double-diffusive bioconvection effects on multi-slip peristaltic flow of Jeffrey nanofluid in an asymmetric channel. Pramana - J Phys 97, 108 (2023). https://doi.org/10.1007/s12043-023-02582-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02582-5

Keywords

PACS Nos

Navigation