Skip to main content
Log in

Radiative neutron capture reaction rates for nucleosynthesis: The creation of the first r-process peak

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In neutron star merger events, the occurrence of rapid neutron capture process (r-process) has been established. About half of the elements beyond iron are synthesised in stars by r-process. In stellar environments, very high neutron flux in a short time (\(\sim \) a few seconds) can be attained, leading to the creation of progressively neutron-rich nuclei until the waiting point is reached. At this point, further neutron capture reactions cannot happen and highly neutron-rich nuclei become stable via \(\beta ^-\) decay. A detailed understanding of the r-process remains illusive. In the present work, the theoretical predictions of radiative neutron capture (n,\(\gamma \)) cross-sections of astrophysical importance and the reaction rates using the Hauser–Feshbach statistical model formalism have been investigated for Fe, Co, Ni, Cu, Zn, Ga, Ge, As and Se isotopes (around the first r-process peak near mass \(= 80\)). These calculations have been compared with the JINA REACLIB reaction rates. The inherent uncertainties remain large in neutron-rich nuclei. When there is low-energy enhancement, a significant increase in the reaction rate occurs for neutron capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. National Research Council, Connecting quarks with the cosmos: Eleven science questions for the new century (The National Academies Press, Washington, DC, 2013)

    Google Scholar 

  2. National Research Council, Nuclear physics: Exploring the heart of matter (The National Academies Press, Washington, DC, 2013)

    Google Scholar 

  3. E M Burbidge, G R Burbidge, W A Fowler and F Hoyle, Rev. Mod. Phys. 29, 547 (1957)

    Article  ADS  Google Scholar 

  4. A G W Cameron, Chalk River Report (1957)

  5. G Wallerstein, I Iben Jr., P Parker, A M Boesgaard, G M Hale, A E Champagne, C A Barnes, Käppeler, V V Smith, R D Hoffman, F X Timmes, C Sneden, R N Boyd, B S Meyer and D L Lambert, Rev. Mod. Phys. 69, 995 (1997)

  6. F Käppeler, R Gallino, S Bisterzo and W Aoki, Rev. Mod. Phys. 83, 157 (2011)

    Article  ADS  Google Scholar 

  7. M Arnould and S Goriely, Phys. Rep. 384, 1 (2003)

    Article  ADS  Google Scholar 

  8. F-K Thielemann, I Dillmann, K Farouqi, T Fischer, C Fröhlich, A Kelic-Heil, I Korneev, K-L Kratz, K Langanke, M Liebendörfer, I V Panov, G Martinez-Pinedo and T Rauscher, J. Phys. Conf. Ser. 202(1), 012006 (2010)

  9. Y-Z Qian and G J Wasserburg, Phys. Rep. 442, 237 (2007)

    Article  ADS  Google Scholar 

  10. M Arnould, S Goriely and K Takahashi, Phys. Rep. 450, 97 (2007)

    Article  ADS  Google Scholar 

  11. F-K Thielemann, A Arcones, R Käppeli, M Liebendörfer, T Rauscher, C Winteler, C Fröhlich, I Dillmann, T Fischer, G Martinez-Pinedo, K Langanke, K Farouqi, K-L Kratz, I Panov and I K Korneev, Prog. Part. Nucl. Phys. 66, 346 (2011)

    Article  ADS  Google Scholar 

  12. E Anders and N Grevesse, Geochim. Cosmochim. Acta 53, 197 (1989); M R Mumpower et al, Prog. Part. Nucl. Phys. 86, 86 (2016)

  13. C Arlandini, F Käppeler, K Wisshak, R Gallino, M Lugaro, M Busso and O Straniero, Astrophys. J. 525, 886 (1999)

    Article  ADS  Google Scholar 

  14. C Sneden, J J Cowan and R Gallino, Ann. Rev. Astron. Astrophys. 46, 241 (2008)

    Article  ADS  Google Scholar 

  15. I U Roederer, G W Preston, I B Thompson, S A Shectman and C Sneden, Astrophys. J. 784, 158 (2014)

    Article  ADS  Google Scholar 

  16. G J Wasserburg, M Busso and R Gallino, Astrophys. J. 466, L109 (1996).

    Article  ADS  Google Scholar 

  17. G J Mathews and J J Cowan, Nature 345, 491 (1990)

    Article  ADS  Google Scholar 

  18. D Argast, M Samland, F-K Thielemann and Y-Z Qian, Astronom. Astrophys. 416, 997 (2004)

    Article  ADS  Google Scholar 

  19. Y Komiya, S Yamada, T Suda and M Y Fujimoto, Astrophys. J. 783, 132 (2014)

    Article  ADS  Google Scholar 

  20. F Matteucci, D Romano, A Arcones, O Korobkin and S Rosswog, Mon. Not. R. Astron. Soc. 447, 326 (2015)

    Article  ADS  Google Scholar 

  21. B S Meyer, G J Mathews, W M Howard, S E Woosley and R D Hoffman, Astrophys. J. 399, 656 (1992)

    Article  ADS  Google Scholar 

  22. S E Woosley, J R Wilson, G J Mathews, R D Hoffman and B S Meyer, Astrophys. J. 433, 229 (1994)

    Article  ADS  Google Scholar 

  23. A Arcones, H-T Janka and L Scheck, Astron. Astrophys. 467, 1227 (2007)

    Article  ADS  Google Scholar 

  24. T Fischer, S C Whitehouse, A Mezzacappa, F-K Thielemann and M Liebendörfer, Astron. Astrophys. 517, A80 (2010)

    Article  Google Scholar 

  25. L Hüdepohl, B Müller, H-T Janka, A Marek and G G Raffelt, Phys. Rev. Lett. 104, 251101 (2010)

    Article  ADS  Google Scholar 

  26. L F Roberts, S Reddy and G Shen, Phys. Rev. C 86, 065803 (2012)

    Article  ADS  Google Scholar 

  27. J M Lattimer and D N Schramm, Astrophys. J. 192, L145 (1974)

    Article  ADS  Google Scholar 

  28. B S Meyer, Astrophys. J. 343, 254 (1989)

    Article  ADS  Google Scholar 

  29. C Freiburghaus, S Rosswog and F-K Thielemann, Astrophys. J. 525, L121 (1999)

    Article  ADS  Google Scholar 

  30. S Wanajo, Y Sekiguchi, N Nishimura, K Kiuchi, K Kyutoku and M Shibata, Astrophys. J. 789, L39 (2014)

    Article  ADS  Google Scholar 

  31. O Just, A Bauswein, R A Pulpillo, S Goriely and H-T Janka, Mon. Not. R. Astron. Soc. 448, 541 (2015)

    Article  ADS  Google Scholar 

  32. S Goriely, A Bauswein and H-T Janka, Astrophys. J. 738, L32 (2011)

    Article  ADS  Google Scholar 

  33. O Korobkin, S Rosswog, A Arcones and C Winteler, Mon. Not. R. Astron. Soc. 426, 1940 (2012)

    Article  ADS  Google Scholar 

  34. D Wanderman and T Piran, Mon. Not. R. Astron. Soc. 448, 3026 (2015)

    Article  ADS  Google Scholar 

  35. R Surman, G C McLaughlin, M Ruffert, H-T Janka and W R Hix, Astrophys. J. 679, L117 (2008)

    Article  ADS  Google Scholar 

  36. A Perego, S Rosswog, R M Cabezón, O Korobkin, R Käppeli, A Arcones and M Liebendörfer, Mon. Not. R. Astron. Soc. 443, 3134 (2014)

    Article  ADS  Google Scholar 

  37. C Winteler, R Käppeli, A Perego, A Arcones, N Vasset, N Nishimura, M Liebendörfer and F-K Thielemann, Astrophys. J. 750 L22 (2012)

    Article  ADS  Google Scholar 

  38. N Nishimura, T Takiwaki and F-K Thielemann, Astrophys. J. 810, 109 (2015)

    Article  ADS  Google Scholar 

  39. T Tsujimoto and N Nishimura, Astrophys. J. Lett. 811, L10 (2015)

    Article  ADS  Google Scholar 

  40. J Pruet, S E Woosley and R D Hoffman, Astrophys. J. 586, 1254 (2003)

    Article  ADS  Google Scholar 

  41. R Surman, G C McLaughlin and W R Hix, Astrophys. J. 643, 1057 (2006)

    Article  ADS  Google Scholar 

  42. A Malkus, J P Kneller, G C McLaughlin and R Surman, Phys. Rev. D 86, 085015 (2012)

    Article  ADS  Google Scholar 

  43. S Wanajo, M Tamamura, N Itoh, K Nomoto, Y Ishimaru, T C Beers and S Nozawa, Astrophys. J. 593, 968 (2003)

    Article  ADS  Google Scholar 

  44. H-T Janka, B Müller, F S Kitaura and R Buras, Astron. Astrophys. 485, 199 (2008)

    Article  ADS  Google Scholar 

  45. P Banerjee, W C Haxton and Y-Z Qian, Phys. Rev. Lett. 106, 201104 (2011)

    Article  ADS  Google Scholar 

  46. I U Roederer, J J Cowan, A I Karakas, K-L Kratz, M Lugaro, J Simmerer, K Farouqi and C Sneden, Astrophys. J. 724, 975 (2010)

    Article  ADS  Google Scholar 

  47. E G Adelberger et al, Rev. Mod. Phys. 83, 195 (2011)

    Article  ADS  Google Scholar 

  48. A J Koning, S Hilaire and M C Duijvestijn, Proceedings of the International Conference on Nuclear Data for Science and Technology, 22–27 April 2007 (Nice, France, 2008) pp. 211–214; Arjan Koning, Stephane Hilaire and Stephane Goriely, TALYS-1.8 A nuclear reaction program, December 26 (2015)

  49. T Rauscher, F-K Thielemann and K-L Kratz, Phys. Rev. C 56, 1613 (1997)

    Article  ADS  Google Scholar 

  50. T Rauscher, Phys. Rev. C 81, 045807 (2010)

    Article  ADS  Google Scholar 

  51. T Rauscher and F-K Thielemann, At. Data Nucl. Data Tables 75, 1 (2000)

    Article  ADS  Google Scholar 

  52. T Rauscher and F-K Thielemann, At. Data Nucl. Data Tables 79, 47 (2001)

    Article  ADS  Google Scholar 

  53. W Hauser and H Feshbach, Phys. Rev. 87, 366 (1952)

    Article  ADS  Google Scholar 

  54. J A Holmes, S E Woosley, W A Fowler and B A Zimmerman, At. Data Nucl. Data Tables 18, 306 (1976)

    Article  ADS  Google Scholar 

  55. A Bartlett, J Görres, G J Mathews, K Otsuki, M Wiescher, D Frekers, A Mengoni and J Tostevin, Phys. Rev. C 74, 015802 (2006)

    Article  ADS  Google Scholar 

  56. M Thoennessen, Rep. Prog. Phys. 67, 1187 (2004)

    Article  ADS  Google Scholar 

  57. R Wang and L-W Chen, Phys. Rev. C 92, 031303(R) (2015)

    Article  ADS  Google Scholar 

  58. R Boleu, S G Nilsson and R K Sheline, Phys. Lett. B 40, 517 (1972)

    Article  ADS  Google Scholar 

  59. D D Clayton, Principles of stellar evolution and nucleosynthesis (McGraw-Hill, 1968) pp. 577–591, ISBN 978-0226109534

  60. W A Fowler and F Hoyle, Astrophys. J. Suppl. 9, 201 (1964); Appendix C

  61. D D Clayton, Principles of stellar evolution and nucleosynthesis (University of Chicago Press, Chicago, 1983)

    Google Scholar 

  62. J C Niemeyer and S E Woosley, Astrophys. J. 475, 740 (1997)

    Article  ADS  Google Scholar 

  63. P Höflich, Nucl. Phys. A 777, 579 (2006)

    Article  ADS  Google Scholar 

  64. T Strohmayer and L Bildsten, New views of thermonuclear bursts, in: Compact stellar X-ray sources edited by W H G Lewin and M Van der Klis (Cambridge University Press, Cambridge, London, 2006) p. 113

  65. H Schatz, L Bildsten and A Cumming, Astrophys. J. 583, L87 (2003)

    Article  ADS  Google Scholar 

  66. A Cumming, J Macbeth, J J M in ’t Zand and D Page, Astrophys. J. 646, 429 (2006)

  67. S Gupta, E F Brown, H Schatz, P Möller and K-L Kratz, Astrophys. J. 662, 1188 (2007)

    Article  ADS  Google Scholar 

  68. W A Fowler, G R Caughlan and B A Zimmerman, Ann. Rev. Astron. Astrophys. 5, 525 (1967)

    Article  ADS  Google Scholar 

  69. R N Boyd, An introduction to nuclear astrophysics (University of Chicago, Chicago, 2008) 1st Edn

  70. R Surman, M Mumpower, R Sinclair, K L Jones, W R Hix and G C McLaughlin, AIP Adv. 4, 041008 (2014)

    Article  ADS  Google Scholar 

  71. G R Caughlan and W A Fowler, At. Data Nucl. Data Tables 40, 283 (1988)

    Article  ADS  Google Scholar 

  72. R A Malaney and W A Fowler, Astrophys. J. 345, L5 (1989)

    Article  ADS  Google Scholar 

  73. M S Smith, L H Kawano and R A Malaney, Astrophys. J. Suppl. 85, 219 (1993)

    Article  ADS  Google Scholar 

  74. C Angulo et al, Nucl. Phys. A 656, 3 (1999)

    Article  ADS  Google Scholar 

  75. P Descouvemont, A Adahchour, C Angulo, A Coc and E Vangioni-Flam, At. Data Nucl. Data Tables 88, 203 (2004)

    Article  ADS  Google Scholar 

  76. J M Blatt and V F Weisskopf, Theoretical nuclear physics (Wiley, New York)

  77. T Mukhopadhyay, J Lahiri and D N Basu, Phys. Rev. C 82, 044613 (2010); ibid., Phys. Rev. C 83, 067603 (2011)

  78. Z Y Bao and F Käppeler, At. Data Nucl. Data Tables 36, 411 (1987)

    Article  ADS  Google Scholar 

  79. I Dillman, M Heil, R Käppeler, R Plag, T Rauscher and F-K Thielemann, AIP Conf. Proc. 819, 123 (2007)

    Google Scholar 

  80. I Dillmann, R Plag, F Käppeler and T Rauscher, The third update of the Karlsruhe Astrophysical Database of Nucleosynthesis in Stars, Proceeding of the Workshop “EFNUDAT Fast Neutrons—Scientific Workshop on Neutron Measurements, Theory & Applications” (28–30 April 2009, Geel, Belgium)

  81. Kozub et al, Phys. Rev. Lett. 109, 172501 (2012)

  82. A Spyrou et al, Phys. Rev. Lett. 113, 232502 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (DNB) acknowledges support from Science and Engineering Research Board, Department of Science and Technology, Government of India, through Grant No. CRG/2021/007333.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D N Basu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Lahiri, J., Dey, M.K. et al. Radiative neutron capture reaction rates for nucleosynthesis: The creation of the first r-process peak. Pramana - J Phys 97, 85 (2023). https://doi.org/10.1007/s12043-023-02574-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02574-5

Keywords

PACS Nos

Navigation