Skip to main content
Log in

The stochastic stability and bifurcation analysis of permanent magnet synchronous motor excited by Gaussian white noise

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Extensive engineering applications have confirmed the necessity of introducing stochastic disturbance into the permanent magnet synchronous motor (PMSM) system. Therefore the stochastic stability and bifurcation of the system under Gaussian white noise are investigated in this study. The stochastic average method transforms the system equation into Itô stochastic differential equation. Further, the stability of the model under white noise excitation is analysed based on the theoretical calculation process. Notably, the mechanism of P-bifurcation of the system is revealed by simulating the evolution process of probability density function with the change in noise intensity. Moreover, the complex dynamics of the system in two-parameter space are explored using multiple numerical tools, in which extensive fish-shaped periodic regions appear. It is particularly interesting that the noise inevitably erodes the boundaries of these fish-shaped periodic regions. Besides, it is noteworthy that a new phenomenon is found from the numerical simulation results that noise intensity can induce convergence behaviour in the periodic oscillation region, which also shows the two-sidedness of noise effect on the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N Hemati and M C Leu, IEEE 28(1), 172 (1992)

    Google Scholar 

  2. N Hemati, IEEE Trans. Circuits Syst. I 41(1), 40 (1994)

    Article  Google Scholar 

  3. L Zhong et al, IEEE Trans Circuits Syst. I 49(3), 383 (2002)

    Article  Google Scholar 

  4. Z Li et al, Control Theory Appl. 17(3), 317 (2000)

    Google Scholar 

  5. C S Tang and Y H Dai, Acta Phys. Sinica 62(18), 180504 (2013)

    Article  Google Scholar 

  6. K Rajagopal et al, Elect. Eng. 99(2), 721 (2017)

    Article  Google Scholar 

  7. C S Tang et al, J. Eng. Sci. Technol. Rev. 13(2), 63 (2020)

    Article  Google Scholar 

  8. D Liu,G Zhou and X Liao, Trans. Inst. Meas. Control 41(9), 2678 (2019)

    Article  Google Scholar 

  9. A Iqbal and G K Singh, Trans. Inst. Meas. Control 41(8), 2352 (2019)

    Article  Google Scholar 

  10. C Y Ma et al, Int. J. Mining Sci. Technol. 21(6), 835 (2011)

    Google Scholar 

  11. L H Yang, Y Ge and X K Ma, Acta Phys. Sinica 66(19), 190501 (2017)

    Article  Google Scholar 

  12. P Xu,Y Jin and S Xiao, J. Nonlinear Sci. 27(11), 113109 (2017)

    Google Scholar 

  13. P Xu and Jin Y, Physica A 492, 1281 (2018)

  14. M He et al, Commun. Nonlinear Sci. Numer. Simul. 28(1–3), 39 (2015)

    Article  ADS  Google Scholar 

  15. S Jiao et al, Chin. J. Phys. 64, 333 (2020)

    Article  Google Scholar 

  16. F Wu et al, Physica A 469, 81 (2017)

    Article  ADS  Google Scholar 

  17. G Cheng et al, Physica A 520, 361 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. L A S Rosa et al, Int. J. Bifurc. Chaos 30(1), 2030001 (2020)

    Article  Google Scholar 

  19. F Prebianca et al, Phys. Lett. A 382(35), 2420 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. D R Da Costa, C P Dettmann and E D Leonel, Commun. Nonlinear Sci. Numer. Simul. 20(3), 871 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. C Manchein, A Celestino and M W Beims, Phys. Rev. Lett. 110(11), 114102 (2013)

    Article  ADS  Google Scholar 

  22. J G Zhang et al, Commun. Nonlinear Sci. Numer. Simul. 15(3), 778 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. J G Zhang and Y D Chu, Cluster Computing 20(2), 1437 (2017)

    Article  Google Scholar 

  24. J G Zhang et al, Int. J. Bifurc. Chaos 32(5), 2250061 (2021)

    Article  Google Scholar 

  25. Z Q Wu and Y Hao, Acta Phys. Sin. 64(6), 060501 (2015)

    Article  Google Scholar 

  26. R L Honeycutt, Phys. Rev. A 45(2), 600 (1992)

    Article  ADS  Google Scholar 

  27. R L Honeycutt, Phys. Rev. A 45(2), 604 (1992)

    Article  ADS  Google Scholar 

  28. A Wolf et al, Physica D 16(3), 285 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  29. S Qiao and X L An, Int. J. Mod. Phys. B 35(2), 2150024 (2021)

    Article  ADS  Google Scholar 

  30. S Qiao and X L An, Pramana – J. Phys. 95, 72 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos 11962012 and 61863022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengwei Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Qiao, S. The stochastic stability and bifurcation analysis of permanent magnet synchronous motor excited by Gaussian white noise. Pramana - J Phys 97, 84 (2023). https://doi.org/10.1007/s12043-023-02560-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02560-x

Keywords

PACS Nos

Navigation