Skip to main content
Log in

Analytical evaluation of isochoric and isobaric heat capacities for actinide dioxide nuclear fuels

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The Einstein–Debye approximation was used with the help of Simpson’s 3/8th rule to develop a method for the temperature dependence of heat capacity at constant volume and constant pressure of actinide dioxide nuclear fuels. The Debye model approximates the acoustic modes of the lattice while the Einstein model approximates the optical modes. Based on Simpson’s 3/8th rule, a simple mathematical expression was used to calculate the isochoric and isobaric heat capacities of nuclear fuels for arbitrary temperature values. When compared to prior published studies of nuclear fuels, such as UO\({}_{2}\) and PuO\({}_{2}\), the dependability, efficiency and precision of the present method are satisfactory. The obtained results are consistent with the literature, demonstrating the validity of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J T White and A T Nelson, J. Nucl. Mater. 443, 342 (2013)

    Article  ADS  Google Scholar 

  2. E Yakub, C Ronchi and D Staicu, J. Nucl. Mater. 400, 189 (2010)

    Article  ADS  Google Scholar 

  3. Y Yun and P M Oppeneer, Mater. Res. Soc. (MRS) Bull. 36, 178 (2011)

  4. V Khokhlov, I Korzun, V Dokutovich and E Filatov, J. Nucl. Mater. 410, 32 (2011)

    Article  ADS  Google Scholar 

  5. K Morimoto, M Kato, M Ogasawara and M Kashimura, J. Nucl. Mater. 389, 179 (2009)

    Article  ADS  Google Scholar 

  6. H Koç, E Eser and B A Mamedov, Nucl. Eng. Design 241, 3678 (2011)

    Article  Google Scholar 

  7. J K Fink, J. Nucl. Mater. 279, 1 (2000)

    Article  ADS  Google Scholar 

  8. H E Schmidt, C Sari, K Richter and P Gerontopoulos, J. Less Common Met. 121, 621 (1986)

    Article  Google Scholar 

  9. M Katayama, J Adachi, K Kurosaki, M Uno, S Miwa, M Osaka, K Tanaka and S Yamanaka, Mater. Res. Soc. Symp. Proc. (Warrendale, PA, 2007) Vol. 1043E, 1043-T09-06.

  10. T Nishi, A Itoh, M Takano, M Numata, M Akabori, Y Arai and K Minato, J. Nucl. Mater. 376, 78 (2008)

    Article  ADS  Google Scholar 

  11. K Kurosaki, M Imamura, I Sato, T Namekawa, M Uno and S Yamanaka, J. Alloys Compd. 387, 9 (2005)

    Article  Google Scholar 

  12. S Saygi, AIP Adv. 4, 027102 (2014)

    Article  ADS  Google Scholar 

  13. C B Basak, A K Sengupta and H S Kamath, J. Alloys Compd. 360, 210 (2003)

    Article  Google Scholar 

  14. J A Webb and I Charit, J. Nucl. Mater. 427, 87 (2012)

    Article  ADS  Google Scholar 

  15. L Vlahovic, D Staicu, A Küst and R J M Konings, J. Nucl. Mater. 499, 504 (2018)

    Article  ADS  Google Scholar 

  16. V Sobolev and S Lemehov, J. Nucl. Mater. 352, 300 (2006)

    Article  ADS  Google Scholar 

  17. Yu N Devyatko, V V Novikov, V I Kuznetsov, O V Khomyakov and D A Chulkin, IOP Conf. Ser. Mater. Sci. Eng.130, 012061 (2016)

    Google Scholar 

  18. T Balcerzak, K Szałowski and M Jǎšcur, J. Phys. Condens. Matter 22, 425401 (2010)

    Article  ADS  Google Scholar 

  19. D Belmonte, G Ottonello and M Vetuschi Zuccolini, J. Chem. Phys. 138, 064507 (2013)

    Article  ADS  Google Scholar 

  20. M H G Jacobs, R Schmid-Fetzer and A P van den Berg, Phys. Chem. Miner. 20, 207 (2013)

    Article  ADS  Google Scholar 

  21. B A Mamedov, Nucl. Eng. Design 276, 124 (2014)

    Article  Google Scholar 

  22. C G S Pillai and P Raj, J. Nucl. Mater. 277, 116 (2000)

    Article  ADS  Google Scholar 

  23. K Kurosaki, K Yamada, M Uno, S Yamanaka, K Yamamoto and T Namekawa, J. Nucl. Mater. 294, 160 (2001)

    Article  ADS  Google Scholar 

  24. P Ruello, L Desgranges, G Baldinozzi, G Calvarin, T Hansen, G Petot-Ervas and C Petot, J. Phys. Chem. Solids 66, 823 (2006)

    Article  ADS  Google Scholar 

  25. H Serizawa, Y Arai and Y Suzuki, J. Nucl. Mater. 280, 99 (2000)

    Article  ADS  Google Scholar 

  26. S Li, R Ahuja and B Johansson, High Press. Res. 22, 471 (2002)

    Article  ADS  Google Scholar 

  27. M Cankurtaran and V Askerov, Phys. Status Solidi B 194, 499 (1996)

    Article  ADS  Google Scholar 

  28. T Arima, S Yamasaki, Y Inagaki and K Idemitsu, J. Alloys. Comd. 415, 43 (2006)

    Article  Google Scholar 

  29. Y Yun, D Legut and P M Oppeneer, J. Nucl. Mater. 426, 109 (2012)

    Article  ADS  Google Scholar 

  30. J P Hiernaut, G J Hyland and C Ronchi, Int. J. Thermophys. 14, 259 (1993)

    Article  ADS  Google Scholar 

  31. E Eser, B Duyuran, M H Bölükdemir and H Koç, Nucl. Eng. Technol. 52, 1208 (2020)

    Article  Google Scholar 

  32. J J Carbajo, G L Yoder, S G Popov and V K Ivanov, J. Nucl. Mater. 299, 181 (2001)

    Article  ADS  Google Scholar 

  33. O L Kruger and H J Savage, J. Chem. Phys. 49, 4540 (1968)

    Article  ADS  Google Scholar 

  34. M Chu, D Meng, S Xiao, W Wang and Q Chen, J. Alloys Compd. 539, 7 (2012)

    Article  Google Scholar 

  35. N I Kolev, Multiphase flow dynamics, in: Nuclear thermal hydraulics (Springer-Verlag, Berlin, 2009)

Download references

Acknowledgements

IAA thanks CVR for constructing a computational program in the Python language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Intikhab A Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, I.A., Rao, C.V. Analytical evaluation of isochoric and isobaric heat capacities for actinide dioxide nuclear fuels. Pramana - J Phys 97, 79 (2023). https://doi.org/10.1007/s12043-023-02557-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02557-6

Keywords

PACS Nos

Navigation