Skip to main content

Advertisement

Log in

Generalised energy equipartition in electrical circuits

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this brief note, we demonstrate a generalised energy equipartition theorem for a generic electrical circuit with Johnson–Nyquist (thermal) noise. From quantum mechanical considerations, the thermal modes have an energy distribution dictated by Planck’s law. For a resistive circuit with some inductance, it is shown that the real part of the admittance is proportional to a probability distribution function which modulates the contributions to the system’s mean energy from various frequencies of the Fourier spectrum. Further, we analyse the case with a capacitor connected in series with an inductor and a resistor. The results resemble superstatistics, i.e. a superposition of two statistics and can be reformulated in the energy representation. The correct classical limit is obtained as \(\hbar \rightarrow 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. W Schottky, Ann. d. Phys. 57, 541 (1918)

    Article  ADS  Google Scholar 

  2. J B Johnson, Nature 119, 50 (1927)

    Article  ADS  Google Scholar 

  3. J B Johnson, Phys. Rev. 32, 97 (1928)

    Article  ADS  Google Scholar 

  4. H Nyquist, Phys. Rev. 32, 110 (1928)

    Article  ADS  Google Scholar 

  5. J F Qu, S P Benz, H Rogalla, W L Tew, D R White and K L Zhou, Meas. Sci. Technol. 30, 112001 (2019)

    Article  ADS  Google Scholar 

  6. P J Baxandall, Wireless World 74, 1397 (November 1968), 388–392 (December 1968), 454–459

  7. E Milotti, 1/f noise: a pedagogical review, https://doi.org/10.48550/arXiv.physics/0204033

  8. R H Dicke, Rev. Sci. Instrum. 17, 268 (1946)

    Article  ADS  Google Scholar 

  9. A Einstein, Ann. d. Phys. 17, 549 (1905)

    Article  ADS  Google Scholar 

  10. P Langevin, C R Acad. Sci. (Paris) 146, 530 (1908)

    Google Scholar 

  11. G E Uhlenbeck and L S Ornstein, Phys. Rev. 36, 823 (1930), Reprinted in Selected papers on noise and stochastic processes edited by N Wax (Dover Publications, New York, 2003)

  12. D T Gillespie, Am. J. Phys. 64, 225 (1996)

    Article  ADS  Google Scholar 

  13. N Wiener, Time series (MIT Press, Cambridge, Massachusetts, 1964) p. 42

    Google Scholar 

  14. C Chatfield, The analysis of time Series: An introduction, Fourth Edn (Chapman and Hall, London, 1989) pp. 94–95

    MATH  Google Scholar 

  15. R Kubo, Rep. Prog. Phys. 29, 255 (1966)

    Article  ADS  Google Scholar 

  16. H B Callen and T A Welton, Phys. Rev. 83, 34 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  17. J J Waterston and J W Strutt, Proc. R. Soc. London 5, 604 (1851)

    Google Scholar 

  18. P Bialas and J Łuczka, Entropy 20, 123 (2018)

    Article  ADS  Google Scholar 

  19. J Spiechowicz, P Bialas and J Łuczka, Phys. Rev. A 98, 052107 (2018)

    Article  ADS  Google Scholar 

  20. P Bialas, J Spiechowicz and J Łuczka, Sci. Rep. 8, 16080 (2018)

    Article  ADS  Google Scholar 

  21. P Bialas, J Spiechowicz and J Łuczka, J. Phys. A: Math. Theor. 52, 15 (2019)

    Article  Google Scholar 

  22. J Spiechowicz and J Łuczka, J. Stat. Mech. 2019, 064002 (2019)

    Article  Google Scholar 

  23. J Łuczka, J. Stat. Phys. 179, 839 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. J Spiechowicz and J Łuczka, Sci. Rep. 11, 4088 (2021)

    Article  ADS  Google Scholar 

  25. J Kaur, A Ghosh and M Bandyopadhyay, Phys. Rev. E 104, 064112 (2021)

    Article  ADS  Google Scholar 

  26. J Kaur, A Ghosh and M Bandyopadhyay, Physica A 599, 127466 (2022)

    Article  Google Scholar 

  27. C Beck and E G D Cohen, Physica A 322, 267 (2003)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Jasleen Kaur for several discussions, comments on the manuscript and for help in preparing the plots. The author also acknowledges Malay Bandyopadhyay for several discussions. This work is supported by Ministry of Education (MoE), Government of India in the form of Prime Minister’s Research Fellowship (ID: 1200454).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritra Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A. Generalised energy equipartition in electrical circuits. Pramana - J Phys 97, 82 (2023). https://doi.org/10.1007/s12043-023-02553-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02553-w

Keywords

PACS

Navigation