Skip to main content
Log in

Development of water-based CuO, TiO2 and ZnO nanofluids and comparative study of thermal conductivity and viscosity

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The present investigation elucidated the influence of nanoparticle volume fraction and temperature on the thermal conductivity and viscosity of water-based CuO, TiO2 and ZnO nanofluids. All the nanoparticles used in the present study were synthesised using the chemical co-precipitation method and their structural and morphological features were explored by XRD and FESEM techniques, respectively. The investigated fluids were prepared using the two-step method by dispersing 0.1–0.5 wt% nanoparticles in distilled water. The thermal conductivities of all the nanofluids were determined in the temperature range of 30–70°C and viscosity in the range of 300–360 K. The experimental study demonstrated that the thermal conductivity and viscosity of the nanofluids depend on volume fraction and temperature. The dynamic viscosity and the thermal conductivity of all the nanofluids increased with the increase in the volume concentration of solid particles. The viscosity decreased and thermal conductivity increased with an increase in temperatures. When the three nanofluids are compared at the specified temperature range, CuO nanofluids showed higher thermal conductivity of 0.5856–0.6332 W\({/}\)mK for 0.1 wt% and 0.6476–0.7465 W\({/}\)mK for 0.5 wt% volume concentration and better viscosity than TiO2 and ZnO nanofluids. The obtained experimental data were compared with some existing thermal conductivity and viscosity models. While comparing the thermal conductivity models, the P Bhattacharya model showed good agreement, whereas no viscosity model agrees with the experimental results. Thus, the obtained results of the prepared nanofluids are useful for conducting further studies in nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P Kumar, D Chaudhary, P Varshney, U Varshney, S Yahya and Y Rafat, J. Energy Storage 32, 102003 (2020)

    Article  Google Scholar 

  2. J Gangwar, B Gupta and A Srivastava, Def. Sci. J. 66, 323 (2016)

    Article  Google Scholar 

  3. O Arthur and M Karim, Renew. Sustain. Energy Rev. 55, 739 (2016)

    Article  Google Scholar 

  4. D Devendiran and V Amirtham, Renew. Sustain. Energy Rev. 60, 21 (2016)

    Article  Google Scholar 

  5. S Rashidi, O Mahian and E Languri, J. Therm. Anal. Calorim. 131, 2027 (2018)

    Article  Google Scholar 

  6. K Wong and O De Leon, Adv. Mech. Eng. 2, 519659 (2010)

    Article  Google Scholar 

  7. A Prasad, D Singh and D Nagar, Int. J. Adv. Res. Innov. Ideas. Educ. 3, 3185 (2017)

    Google Scholar 

  8. X Wang, X Xu and S Choi, J. Thermophys. Heat Transf. 13, 474 (1999)

    Article  Google Scholar 

  9. N Sidik, M Yazid and R Mamat, Int. Commun. Heat Mass Transf. 68, 85 (2015)

    Article  Google Scholar 

  10. A Kumar and S Subudhi, Appl. Therm. Eng. 160, 114092 (2019)

    Article  Google Scholar 

  11. M Haque, R Bakar, K Kadirgama, M Noor and M Shakaib, J. Mech. Eng. Sci. 10, 1778 (2016)

    Article  Google Scholar 

  12. E Okonkwo, I Wole-Osho, I Almanassra, Y Abdullatif and T Al-Ansari, J. Therm. Anal. Calorim. 145, 2817 (2021)

    Article  Google Scholar 

  13. M Rafiq, M Shafique, A Azam and M Ateeq, Ain Shams Eng. J. 12, 555 (2021)

    Article  Google Scholar 

  14. M Liu, M Lin and C Wang, Nanoscale Res. Lett. 6, 1 (2011)

    ADS  Google Scholar 

  15. A Tiwari, P Ghosh and J Sarkar, Int. J. Emerg. Technol. Adv. Eng. 3, 221 (2013)

    Google Scholar 

  16. M Bahiraei and S Heshmatian, Energy Convers. Manag. 172, 438 (2018)

    Article  Google Scholar 

  17. D Kulkarni, R Vajjha, D Das and D Oliva, Appl. Therm. Eng. 28, 1774 (2008)

    Article  Google Scholar 

  18. Y Li, S Tung, E Schneider and S Xi, Powder Technol. 196, 89 (2009)

    Article  Google Scholar 

  19. S Chakraborty and P Panigrahi, Appl. Therm. Eng. 174, 115259 (2020)

    Article  Google Scholar 

  20. J Philip, P Shima and B Raj, Appl. Phys. Lett. 92, 043108 (2008)

    Article  ADS  Google Scholar 

  21. S Kim, S Choi and D Kim, J. Heat Tranf. 129, 298 (2007)

    Article  Google Scholar 

  22. K Suganthi and K Rajan, Renew. Sustain. Energy Rev. 76, 226 (2017)

    Article  Google Scholar 

  23. V Kumaresan and R Velraj, Thermochim. Acta 545, 180 (2012)

    Article  Google Scholar 

  24. M Nazari, R Ghasempour, M Ahmadi, G Heydarian and M Shafii, Int. Commun. Heat Mass Transf. 91, 90 (2018)

    Article  Google Scholar 

  25. J C A Maxwell, A treatise an electricity and magnetism 2nd Edn (Clarendon Press, Oxford, UK, 1881)

    Google Scholar 

  26. P Bhattacharya, S Saha, A Yadav, P Phelan and R Prasher, J. Appl. Phys. 95, 6492 (2004)

    Article  ADS  Google Scholar 

  27. C Nan, Z Shi and Y Lin, Chem. Phys. Lett. 375, 666 (2003)

    Article  ADS  Google Scholar 

  28. E Timofeeva, A Gavrilov, J McCloskey and Y Tolmachev, Phys. Rev. 76, 061203 (2007)

    Google Scholar 

  29. A Einstein, Ann. der Phys. 19, 289 (1906)

    Article  ADS  Google Scholar 

  30. H Brinkman, J. Chem. Phys. 20, 571 (1952)

    Article  ADS  Google Scholar 

  31. G Batchelor, J. Fluid Mech. 83, 97 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  32. I Mahbubul, S Rahman and M Amalina, Int. Commun. Heat Mass Transf. 55, 874 (2012)

    Article  Google Scholar 

  33. S Mousavi, F Esmaeilzadeh and X Wang, J. Therm. Anal. Calorim. 137, 879 (2019)

    Article  Google Scholar 

  34. N Bouazizi, R Bargougui, A Oueslati and R Benslama, Adv. Mater. Lett. 6, 158 (2015)

    Article  Google Scholar 

  35. S Botewad, V Pahurkar, G Muley, D Gaikwad, G Bodkhe, M Shirsat and P Pawar, Front. Mater. 7, 184 (2020)

    Article  ADS  Google Scholar 

  36. W Muhammad, N Ullah, M Haroon and B Abbasi, RSC Adv. 9, 29541 (2019)

    Article  ADS  Google Scholar 

  37. J He, Y Du, Y Bai, J An, X Cai, Y Chen and Q Feng, Molecules 24, 2996 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S N Botewad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girhe, N.B., Botewad, S.N., More, C.V. et al. Development of water-based CuO, TiO2 and ZnO nanofluids and comparative study of thermal conductivity and viscosity. Pramana - J Phys 97, 68 (2023). https://doi.org/10.1007/s12043-023-02546-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02546-9

Keywords

PACS Nos

Navigation