Skip to main content
Log in

Description of energy spectrum and signature inversion for \({}^{160}\hbox {Tm}\) and \({}^{161}\hbox {Tm}\) isotopes using the projected shell model

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The projected shell model (PSM) was employed to study the signature inversion of \({}^{160}\hbox {Tm}\) and \({}^{161}\hbox {Tm}\) isotopes. The Hamiltonian of these isotopes were constructed and solved to obtain the energy levels and the \(\gamma \)-ray transition energies. The rotational bands of the odd–odd \({}^{160}\hbox {Tm}\) and odd–even \({}^{161}\hbox {Tm}\) isotopes of thulium nucleus were constructed based on the \(\pi h\frac{11}{2} \otimes \upsilon i\frac{13}{2}\) Nilsson configuration to calculate the kinetic and dynamic moments of inertia, \(\gamma \)-ray transition energy (\(\Delta {I}=1\)) and the staggering parameter (S(I)). Yrast band with two signatures for both isotopes have been extracted and compared with the experimental data. The anomalous splitting and signature inversion occurred due to the quadruple deformation in both isotopes. Analysis of level staggering and signature inversion show that signature inversion for the \({}^{160}\hbox {Tm}\) isotope occurs at low spin region, while for the \({}^{161}\hbox {Tm}\) isotope, it occured in the intermediate spin region. As expected, zig-zag behaviour and phase transition, as well as signature of energy splitting are clearly indicated in figures showing variation of S(I) and \(\Delta E\) with spin. This behaviour is more visible for the odd–even \({}^{161}\hbox {Tm}\) isotope than for the odd–odd \({}^{160}\hbox {Tm}\) isotope. Good agreement between the calculated results and experimental data confirms the success of the PSM model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S G Nilsson, Dan. Mat. Fys. Medd. 29(16), 1 (1955)

    Google Scholar 

  2. Inger-Lena Lamm, Nucl. Phys. A 125, 504 (1969)

    Article  ADS  Google Scholar 

  3. K Hara and S Iwasaki, Nucl. Phys. A 332, 61 (1979)

    Article  ADS  Google Scholar 

  4. K Hara and S Iwasaki, Nucl. Phys. A 348, 200 (1980)

    Article  ADS  Google Scholar 

  5. K Hara and S Iwasaki, Nucl. Phys. A 430, 175 (1984)

    Article  ADS  Google Scholar 

  6. K Hara and Y Sun, Int. J. Mod. Phys. E 4(4), 637 (1991)

    Article  ADS  Google Scholar 

  7. K Hara and Y Sun, Nucl. Phys. A 529(3), 445 (1991)

    Article  ADS  Google Scholar 

  8. R Devi, B D Sehgal, S K Khosa and J A Sheikh, Phys. Rev. C 72, 064304-1 (2005)

    Article  ADS  Google Scholar 

  9. B Slathia, R Devi and S K Khosa, Nucl. Phys. A 943, 39 (2015)

    Article  ADS  Google Scholar 

  10. Y Sun and K Hara, Comput. Phys. Commun. 104, 245 (1997)

    Article  ADS  Google Scholar 

  11. K Hara and Y Sun, Nucl. Phys. A 537, 77 (1992)

    Article  ADS  Google Scholar 

  12. B Slathia, R Devi and S K Khosa, Ind. J. Phys. 90, 1165 (2016)

    Article  Google Scholar 

  13. H Drost, W Weiss and G Weyer, Nucl. Phys. A 172, 348 (1971)

    Article  ADS  Google Scholar 

  14. U Birkental et al, Nucl. Phys. A 555, 643 (1993)

    Article  ADS  Google Scholar 

  15. R Devi, B D Sehgal and S K Khosa, Pramana – J. Phys. 67(3), 467 (2006)

    Article  ADS  Google Scholar 

  16. M Mahmoud, Turk. J. Phys. 33, 333 (2009)

    Google Scholar 

  17. A Ibanez-Sandova, M E Ortiz and V Velazquez, Phys. Rev. C 83, 034308-1 (2011)

    ADS  Google Scholar 

  18. A Mita, Ashok Kumar Jain, Alpana Goel and Balraj Singh, Pramana – J. Phys. 53(3), 463 (1999)

    Article  ADS  Google Scholar 

  19. J Y Zeng, S X Liu, Y A Lei and L Yu, Phys. Rev. C 63, 024305-1 (2001)

    Article  ADS  Google Scholar 

  20. Ali Khalaf, Madiha Okasha and Essam Ragheb, Aust. J. Basic Appl. Sci. 10(16), 192 (2016)

    Google Scholar 

  21. M Shahriarie, S Mohammadi and Z Firouzi, J. Kor. Phys. Soc. 75, L1 (2019)

    Article  Google Scholar 

  22. S Iwasaki and K Hara, Prog. Theor. Phys. 68(5), 1782 (1982)

    Article  ADS  Google Scholar 

  23. Y -X Liu et al, Nucl. Phys. A 858, 11 (2011)

    Article  ADS  Google Scholar 

  24. L M Chen and R S Guo, Chin. J. Phys. 47, 788 (2009)

    Google Scholar 

  25. P Möller, A J Sierk, T Ichikawa and H Sagawa, At. Data Nucl. Data Tables 109–110, 1 (2016)

  26. B Slathia, R Devi and S K Khosa, Ind. J. Phys. 90, 1165 (2016)

    Article  Google Scholar 

  27. N Yoshida, H Sagawa and J Otsuka, Nucl. Phys. A 567, 17 (1994)

    Article  ADS  Google Scholar 

  28. A Goel and A K Jain, Pramana – J. Phys. 46, 51 (1996)

    Article  ADS  Google Scholar 

  29. K Lagergren et al, Phys. Rev. C 72, 057303-1 (2005)

    Article  ADS  Google Scholar 

  30. C Teal et al, Phys. Rev. C 78, 017305-1 ( 2008)

    Article  ADS  Google Scholar 

  31. Sun Liang et al, Chin. Phys. Lett. 25, 1996 (2008)

    Article  ADS  Google Scholar 

  32. J A Sheikh, G H Bhat, Y Su, G B Vakil and R Palit, Phys. Rev. C 77, 034313-1 (2008)

    ADS  Google Scholar 

  33. R Bengtsson, H Frisk and F R May, Nucl. Phys. A 415, 189 (1984)

    Article  ADS  Google Scholar 

  34. P Verma et al, Nucl. Phys. A 918, 1 (2013)

    Article  ADS  Google Scholar 

  35. K Hara, Nucl. Phys. A 557, 449c (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M R Pahlavani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahlavani, M.R., Teymoori, M. Description of energy spectrum and signature inversion for \({}^{160}\hbox {Tm}\) and \({}^{161}\hbox {Tm}\) isotopes using the projected shell model. Pramana - J Phys 97, 67 (2023). https://doi.org/10.1007/s12043-023-02545-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02545-w

Keywords

PACS Nos

Navigation