Skip to main content
Log in

Dynamical analysis of a 5D novel system based on Lorenz system and its hybrid function projective synchronisation using adaptive control

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we have introduced a novel five-dimensional (5D) hyperchaotic system by extending the well-known Lorenz system. The dynamical properties of the system are analysed by calculating the Lyapunov exponents, graphing the phase portraits, bifurcation diagrams, the time series and by finding the Kaplan–Yorke dimension. The equilibrium points of the system have been calculated and the stability analysis of these equilibrium points is discussed. Hybrid function projective synchronisation has been carried out between the identical systems using the scheme of adaptive control. Suitable controllers have been designed to attain the desired synchronisation between the systems using Lyapunov stability theory. The theoretical results have been validated by performing numerical simulations using the MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. S H Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (CRC Press, 2018)

  2. A Wolf, J B Swift, H L Swinney and J A Vastano, Phys. D: Nonlinear Phenom. 16(3), 285 (1985)

    Article  ADS  Google Scholar 

  3. J C Sprott, Elegant chaos: algebraically simple chaotic flows (World Scientific, 2010)

  4. M Valtonen and H Karttunen, The three-body problem (Cambridge University Press, 2006)

  5. J Barrow-Green, Poincaré and the three body problem (American Mathematical Soc., 1997)

  6. E N Lorenz, J. Atmos. Sci. 20(2), 130 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  7. L Pecora and T Carroll, Phys. Rev. Lett. 64(8), 821 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  8. A Kiani-B, K Fallahi, N Pariz and H Leung, Commun. Nonlinear Sci. Numer. Simul. 14, 863 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. L Fabiny and K Wiesenfeld, Phys. Rev. A 43(6), 2640 (1991)

    Article  ADS  Google Scholar 

  10. S Vaidyanathan, Int. J. ChemTech. Res. 8(7), 159 (2015)

    Google Scholar 

  11. B Blasius and L Stone, Int. J. Bifurc. Chaos Appl. Sci. Eng. 10(10), 2361 (2000)

  12. N Laskin, Phys. A: Stat. Mech. Appl. 287(3–4), 482 (2000)

    Article  MathSciNet  Google Scholar 

  13. A Yousefpour, H Jahanshahi, J M Munoz- Pacheco, S Bekiros and Z Wei, Chaos Solitons Fractals 130, 109400 (2020)

    Article  Google Scholar 

  14. R L Magin, Comput. Math. Appl. 59(5), 1586 (2010)

  15. D Hansel and H Sompolinsky, Phys. Rev. Lett. 68, 718 (1992)

    Article  ADS  Google Scholar 

  16. H C Chen, H T Yau and P Y Chen, Entropy 16(8), 4566 (2014)

    Article  ADS  Google Scholar 

  17. X Wang and J Zhao, Commun. Nonlinear Sci. Numer. Simul. 15(12), 4052 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. A B Potapov and M K Ali, Differ. Equ. Dyn. Syst. 9(3–4), 259 (2001)

    Google Scholar 

  19. Q Guo and F Wan, PLoS One 12(12), (2017)

  20. S Vaidyanathan, J. Comput. Inf. Syst. 2(4), 6 (2011)

    Google Scholar 

  21. K S Sudheer and M Sabir, Pramana – J. Phys. 73(4), 781 (2009)

    Google Scholar 

  22. Y Chen, Z Jia and G Deng, Appl. Math. Lett. 3, 549 (2012)

    Article  Google Scholar 

  23. M Ho, Y Hung and C Chou, Phys. Lett. A 296, 43 (2002)

    Article  ADS  Google Scholar 

  24. M M Al-Sawalha, J. Nonlinear Sci. Appl. 10, 2103 (2017)

    Article  MathSciNet  Google Scholar 

  25. S Wang, Y Yu and M Diao, Physica A 389, 4981 (2010)

    Article  ADS  Google Scholar 

  26. A Khan and Shikha, Int. J. Dyn. Control 5, 1114 (2017)

  27. M T Yassen, Chaos Solitons Fractals 23, 131 (2005)

    Article  ADS  Google Scholar 

  28. R Zhang and S Yang, Nonlinear Dyn. 66(4), 831 (2011)

    Article  Google Scholar 

  29. M T Yassen, Chaos Solitons Fractals 27, 537 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. S H Hosseinnia, R Ghaderi, A Ranjbar, M Mahmoudian and S Momani, Comput. Math. Appl. 59(5), 1637 (2010)

    Article  MathSciNet  Google Scholar 

  31. F Wang and C Liu, Phys. Lett. A 360, 274 (2006)

    Article  ADS  Google Scholar 

  32. L Huang, R Feng and M Wang, Phys. Lett. A 320(4), 271 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  33. A Khan, D Khattar and N Agrawal, Int. J. Dyn. Control. 6, 1585 (2018)

    Article  MathSciNet  Google Scholar 

  34. G Cai and Z Tan, J. Uncertain Syst. 1(3), 235 (2007)

    Google Scholar 

  35. A Khan, D Khattar and N Agrawal, Int. J. Appl. Comput. 8(1), (2022)

  36. K Ciesielski, Eur. J. Math. 10(6), 2110 (2012)

    MathSciNet  Google Scholar 

  37. P Frederickson, J L Kalpan, E D Yorke and J A Yorke, J. Differ. Equs 49(2), 185 (1983)

    Article  ADS  Google Scholar 

  38. H K Khalil, Nonlinear systems (Prentice Hall, 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukul Sirohi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattar, D., Agrawal, N. & Sirohi, M. Dynamical analysis of a 5D novel system based on Lorenz system and its hybrid function projective synchronisation using adaptive control. Pramana - J Phys 97, 76 (2023). https://doi.org/10.1007/s12043-023-02544-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02544-x

Keywords

PACS Nos

Navigation