Skip to main content
Log in

Attractive Bose–Einstein condensation in a finite trap and instability of ground state energies

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The energies of Bose–Einstein condensate of \(^{85}\)Rb atoms confined by the 3-dimensional parabolic and quartic trap are investigated. The two-body correlations among atoms are taken into calculation in many-body approach. We increase the number of bosons within the anharmonic trap and study the behaviour of different zero-temperature energies in detail. The interatomic interaction strongly depends on the anharmonic coefficient (\(\lambda \)) as the collapsing point is observed to be varying for different values of \(\lambda \). For weak values of \(\lambda \), we observe similar behaviour of energies, as studied for harmonically trapped attractive condensate. However, when the anharmonic distortion is high, dramatic behaviour of energies near the collapsing point is observed. It is shown that the anharmonic effect is very crucial to propel the condensate towards collapsing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E Lundh, A Collin and K A Suominen, Phys. Rev. Lett. 92, 070401 (2004).

    Article  ADS  Google Scholar 

  2. T K Ghosh, Eur. Phys. J. D. 31, 101 (2004).

    Article  ADS  Google Scholar 

  3. H Fu and E Zaremba, Phys. Rev. A. 73, 013614 (2006).

    Article  ADS  Google Scholar 

  4. G Q Li, L B Fu, J K Xue, X Z Chen and J Liu, Phys. Rev. A. 74, 055601 (2006).

    Article  ADS  Google Scholar 

  5. B Chakrabarti, T K Das and P K Debnath, Phys. Rev. A. 79, 053629 (2009).

    Article  ADS  Google Scholar 

  6. P K Debnath and B Chakrabarti, Phys. Rev. A. 82, 043614 (2010).

    Article  ADS  Google Scholar 

  7. S K Haldar, P K Debnath and B Chakrabarti, Eur. Phys. J. D. 67, 188 (2013).

    Article  ADS  Google Scholar 

  8. S K Haldar, B Chakrabarti, S Bhattacharyya and T K Das, Eur. Phys. J. D. 68, 262 (2014).

    Article  ADS  Google Scholar 

  9. S K Haldar, B Chakrabarti and T K Das, Phys. Rev. A. 82, 043616 (2010).

    Article  ADS  Google Scholar 

  10. D A Zezyulin, Phys. Rev. A. 79, 033622 (2009).

    Article  ADS  Google Scholar 

  11. D A Zezyulin, G L Alfimov, V V Konotop and V M Perez-Garcia, Phys. Rev. A. 78, 013606 (2008).

    Article  ADS  Google Scholar 

  12. D M Stamper-Kurn, M R Andrews, A P Chikkatur, S Inouye, H-J Miesner, J Stenger and W Ketterle, Phys. Rev. Lett. 80, 2027 (1998).

    Article  ADS  Google Scholar 

  13. V Bretin, S Stock, Y Seurin and J Dalibard, Phys. Rev. Lett. 92, 050403 (2004).

    Article  ADS  Google Scholar 

  14. S Stock, V Bretin, F Chevy and J Dalibard, Europhys. Lett. 65, 594 (2004).

    Article  ADS  Google Scholar 

  15. P K Debnath, Pramana – J. Phys. 96, 0136 (2022)

    Article  ADS  Google Scholar 

  16. J L Roberts, N R Claussen, S L Cornish, E A Donley, E A Cornell and C E Wieman, Phys. Rev. Lett. 86, 4211 (2001).

    Article  ADS  Google Scholar 

  17. J L Roberts, N R Claussen, J P Burke, J C H Greene, E A Cornell and C E Wieman, Phys. Rev. Lett. 81, 5109 (1998).

    Article  ADS  Google Scholar 

  18. S L Cornish, N R Claussen, J L Roberts, E A Cornell and C E Wieman, Phys. Rev. Lett. 85, 1795 (2000).

    Article  ADS  Google Scholar 

  19. A Kundu, B Chakrabarti, T K Das and S Canuto, J. Phys. B. 40, 2225 (2007).

    Article  ADS  Google Scholar 

  20. T K Das, S Canuto, A Kundu and B Chakrabarti, Phys. Rev. A. 75, 042705 (2007).

    Article  ADS  Google Scholar 

  21. T K Das and B Chakrabarti, Phys. Rev. A. 70, 063601 (2004).

    Article  ADS  Google Scholar 

  22. P K Debnath, B Chakrabarti, T K Das and S Canuto, J. Chem. Phys. 137, 164106 (2012).

    Article  Google Scholar 

  23. P K Debnath, B Chakrabarti and T K Das, Int. J. Quant. Chem. 111, 1333 (2011).

    Article  Google Scholar 

  24. B Chakrabarti, T K Das and P K Debnath, J. Low Temp. Phys. 157, 527 (2009).

    Article  ADS  Google Scholar 

  25. J L Ballot and M F de la Ripelle, Ann. Phys. (N.Y.) 127, 62 (1980).

  26. M F de la Ripelle, Ann. Phys. (N.Y.) 147, 281 (1983).

  27. T K Das, A Kundu, S Canuto and B Chakrabarti, Phys. Lett. A. 373, 258 (2008).

    Article  ADS  Google Scholar 

  28. M Abramowitz and I A Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1972) p. 773.

    MATH  Google Scholar 

  29. T K Das, H T Coelho and M F de la Ripelle, Phys. Rev. C. 26, 2281 (1982).

    Article  ADS  Google Scholar 

  30. B Chakrabarti and T K Das, Phys. Rev. A. 78, 063608 (2008).

    Article  ADS  Google Scholar 

  31. C J Pethick and H Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2001) Vol. 1, p. 105.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Debnath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, P.K. Attractive Bose–Einstein condensation in a finite trap and instability of ground state energies. Pramana - J Phys 97, 77 (2023). https://doi.org/10.1007/s12043-023-02543-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02543-y

Keywords

PACS Nos

Navigation