Skip to main content
Log in

Investigating the resonance of an elliptical solid and annular plasma column with the dielectric layer and the core

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The resonance of a plasma column with an elliptical cross-section surrounded by a dielectric layer is investigated. It is assumed that the incident electromagnetic wave has a wavelength much larger than the dimensions of the assumed cross-section of the column. Using boundary conditions, the electric potentials and resonant frequencies of an elliptical plasma column covered by a dielectric for two polarisations of incident electric field are calculated. The incident electric field is considered in directions of the minor and major axes of the boundary ellipse. The limit cases are examined. The dependence of the resonant frequency on the dielectric constant and the plasma and dielectric dimensions are investigated. The obtained results are drawn and analysed. Then an elliptical plasma column with a coaxial dielectric core and a dielectric layer in scattering process by long wavelength waves is considered and the resonant frequencies of this object for two polarisations of incident electric field are calculated. The obtained results are plotted and analysed. This configuration can be presented as a plasma antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R S Chen et al, IEEE Trans. Antennas Propag. 69, 7092 (2021)

    Article  ADS  Google Scholar 

  2. C Goodbody, T Karacolak and N Tran, IET Electron. Lett. 54, 1255 (2018)

    Google Scholar 

  3. Z Zhang, X Cao, J Gao, S Li and J Han, IEEE Antennas Wireless Propag. Lett. 17, 1271 (2018)

    Article  ADS  Google Scholar 

  4. J Wu, M Li and N Behdad, IEEE Trans. Antennas Propag. 66, 1559 (2018)

    Article  ADS  Google Scholar 

  5. H Ye and Y Q Jin, IEEE Trans. Antennas Propag. 53, 1234 (2005)

    Article  ADS  Google Scholar 

  6. J Liu, S He, L Zhang, Y Zhang, G Zhu, H Yin and H Yan, IEEE Trans. Geosci. Remote Sensing 58, 8701 (2020)

    Article  ADS  Google Scholar 

  7. S H Tseng, IEEE Photon. J. 2, 636 (2010)

    Article  ADS  Google Scholar 

  8. W Chen, L Guo, J Li and S Liu, IEEE Trans. Plasma Sci. 44, 3235 (2016)

    Article  ADS  Google Scholar 

  9. C Paoloni et al, IEEE Trans. Plasma Sci. 44, 369 (2016)

    Article  ADS  Google Scholar 

  10. G Wang, L Zhang, F He and J Ouyang, Plasma Sci. Technol. 18, 791 (2016)

    Article  ADS  Google Scholar 

  11. R Holl and V P Cable, IEEE Trans. Electromagn. Compat. 34, 9 (1992)

    Article  ADS  Google Scholar 

  12. D Qian, D Jun, G C Jiang and S Lei, IEEE Int. Conf. Microwave Millimeter Wave Technol. 6, 413 (2008)

    Google Scholar 

  13. J R Roth, Int. J. Infrared Millimeter Waves 14, 1601 (1993)

    Article  ADS  Google Scholar 

  14. Y Ahmadizadeh, B Jazi and A Abdoli-Arani, Waves Random Complex Media 23, 336 (2013)

    Article  ADS  Google Scholar 

  15. A Abdoli-Arani, R Ramezani-Arani, B Jazi and S Golharani, Waves Random Complex Media 22, 370 (2012)

    Article  ADS  Google Scholar 

  16. P G Zouros and G C Kokkorakis, IEEE Trans. Microwave Theory Tech. 63, 3054 (2015)

    Article  ADS  Google Scholar 

  17. H Zhong, L Xie and J Zhou, J. Quant. Spectrosc. Radiat. Transfer 247, 106952 (2020)

    Article  Google Scholar 

  18. A Soltani, Z Rahmani and E Heidari-Semiromi, Optik 243, 166846 (2021)

    Article  ADS  Google Scholar 

  19. G Khojeh and A Abdoli-Arani, Chin. J. Phys. 77, 945 (2022)

    Article  Google Scholar 

  20. H F Zhang, AIP Adv. 8, 015304 (2018)

    Article  ADS  Google Scholar 

  21. Y P Li, H F Zhang, T Yang, T Y Sun and L Zeng, IEEE J. Quantum Electron. 56, 1 (2020)

    Google Scholar 

  22. H F Zhang, H Zhang, Y Yao, J Yang and J X. Liu, IEEE Photon. J. 10, 1 (2018)

  23. H Zhang, J Yang, H Zhang and J Liu, Opt. Mater. Express 8, 2103 (2018)

    Article  ADS  Google Scholar 

  24. H F Zhang, G B Liu, T Huang and L Zeng, Plasmonics 15, 1035 (2020)

  25. F R Cooray and A K Hamid, AEU-Int. J. Electron. Commun. 66, 472 (2012)

    Google Scholar 

  26. J A Roumeliotis, H K Manthopoulos and V K Manthopoulos, IEEE Trans. Microw. Theory Tech. 41, 862 (1993)

    Article  ADS  Google Scholar 

  27. N B Kakogiannos and J A Roumeliotis, IEEE Trans. Microw. Theory Tech. 38, 1660 (1990)

    Article  ADS  Google Scholar 

  28. A R Sebak, IEEE Trans. Antennas Propag. 48, 1574 (2000)

    Article  ADS  Google Scholar 

  29. G D Tsogkas, J A Roumeliotis and S P Savaidis, Electromagnetics 27, 159 (2007)

    Article  Google Scholar 

  30. N W McLachlan, Theory and application of Mathieu functions (Dover, New York, USA, 1964)

    MATH  Google Scholar 

  31. N A Krall and A W Trivelpiece, Principles of plasma physics (McGraw-Hill, New York, 1973)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Abdoli Arani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirizad Hejrandoost, S., Abdoli Arani, A. & Rahmani, Z. Investigating the resonance of an elliptical solid and annular plasma column with the dielectric layer and the core. Pramana - J Phys 97, 59 (2023). https://doi.org/10.1007/s12043-023-02531-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02531-2

Keywords

PACS Nos

Navigation