Skip to main content
Log in

Electronic structure, optical and Mössbauer investigations of ferroelectric [Pb(Fe0.5Nb0.5)O3]0.2-[(Ca0.2Sr0.8)TiO3]0.8

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this research article, we report the various functional properties of [Pb(Fe0.5Nb0.5)O3]0.2- [(Ca0.2Sr0.8)TiO3]0.8 perovskite ceramic compound prepared by the solid-state process. Rietveld refinement proved that the compound crystallises in a pseudocubic structure as the primary phase. The dual oxidation states of Fe, Nb, Ti and the presence of oxygen vacancies were analysed by X-ray photoelectron spectroscopy. Ti–O and Ti–O–Ti prominent perovskite vibrations were examined by Fourier transform infrared (FTIR) analysis. Raman spectroscopy technique was employed to study the asymmetric TiO6 octahedral stretching and A1g phonon mode of PbFe0.5Nb0.5O3 (PFN). Field emission scanning electron microscopy (FESEM) predicted better grain growth with an average grain size of 2.445 µm. Energy-dispersive X-ray spectroscopy (EDS) analysis was done for elemental confirmation and purity of the sample. A detailed optical analysis was done by incorporating both absorbance and diffuse reflectance spectroscopy. A narrow band gap was revealed from the optical studies and Urbach energy was analysed. The conduction band minimum (CBM) level was estimated to be − 1.14 eV exploring the photocatalytic response. Electrical properties were investigated in terms of dielectric constant, conductivity, complex impedance and modulus analyses. A weak ferroelectric response was noticed with the remnant polarisation of 0.181 µC\(/\)cm2 from PE loop analysis. Mössbauer spectroscopy revealed a strong paramagnetic doublet indicating the high-spin Fe3+ species in the octahedral environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. S Matteppanavar, B Angadi and S Rayaprol, Physica B 448, 229 (2014)

    Article  ADS  Google Scholar 

  2. O Raymond, R Font, N Suárez, J Portelles and J M Siqueiros, Ferroelectrics 294, 141 (2003)

    ADS  Google Scholar 

  3. X S Gao, X Y Chen, J Yin, J Wu, Z G Liu and M Wang, J. Mater. Sci. 35, 5421 (2000)

    Article  ADS  Google Scholar 

  4. S Sahoo, R N P Choudhary and B K Mathur, Phys. Status Solidi B 246, 1377 (2009)

    Article  ADS  Google Scholar 

  5. S W Cheong and M Mostovoy, Nature Mater. 6, 13 (2007)

    Article  ADS  Google Scholar 

  6. Y Sakabe, Am. Ceram. Soc. Bull. 66, 1338 (1987)

    Google Scholar 

  7. E V Ramana, M P F Graça and M A Valente, Phys. Status Solidi A 211, 2094 (2014)

    Article  ADS  Google Scholar 

  8. M H Lente, J D S Guerra, G K S de Souza, B M Fraygola, C F V Raigoza, D Garcia and J A Eiras, Phys. Rev. B 78, 054109 (2008)

    Article  ADS  Google Scholar 

  9. S Ananta and N W Thomas, J. Eur. Ceram. Soc. 19, 1873 (1999)

    Article  Google Scholar 

  10. D Bochenek and P Niemiec, Materials 11, 2504 (2018)

    Article  ADS  Google Scholar 

  11. V Bonny, M Bonin, P Sciau, K J Schenk and G Chapuis, Solid State Commun. 102, 347 (1997)

    Article  ADS  Google Scholar 

  12. S A Ivanov, R Tellgren, H Rundlof, N W Thomas and S Ananta, J. Phys.: Condens. Matter 12, 2393 (2000)

    ADS  Google Scholar 

  13. S P Singh, A K Singh, D Pandey, H Sharma and Om Prakash, J. Mater. Res. 18, 2677 (2003)

    Article  ADS  Google Scholar 

  14. L Zhang, Z Yao, M T Lanaganc, H Haoa, J Xiea, Q Xua, M Yuanc, M Sarkaratc, M Caoa and H Liu, J. Eur. Ceram. Soc. 38, 2534 (2018)

    Article  Google Scholar 

  15. M Ceh, D Kolar and L Golic, J. Solid State Chem. 68, 68 (1987)

    Article  ADS  Google Scholar 

  16. Y Nakano and N Ichinose, J. Mater. Res. 5, 2910 (1990)

    Article  ADS  Google Scholar 

  17. L Zhang, H Hao and H Liu, J. Eur. Ceram. Soc. 36, 3157 (2016)

    Article  Google Scholar 

  18. G F Zhang, H Liu, Z Yao, M Cao and H Hao, J. Mater. Sci: Mater. Electron. 26, 2726 (2015)

    Google Scholar 

  19. A Mater, M Kahlaoui, A Inoubli and C Chefi, Adv. Mater. Sci. Technol. 3, 1 (2021)

    Article  Google Scholar 

  20. V Purohit and R N P Choudhary, Mater. Chem. Phys. 256, 123732 (2020)

    Article  Google Scholar 

  21. D Bochenek and P Niemiec, Matec. Conf. 242, 01002 (2018)

    Article  Google Scholar 

  22. K M Batoo, R Verma, A Chauhan, R Kumar, M Hadic, O M Aldossary and Y A Douri, J. Alloys Compd. 883, 160836 (2021)

    Article  Google Scholar 

  23. Z Pei, X Zhou, K Leng, W Xia, Y Wei and X Zhu, AIP Adv. 10, 075320 (2020)

    Article  ADS  Google Scholar 

  24. Y Yan, H Yang, Z Yi, R Li and X Wang, Micromachines 10, 254 (2019)

    Article  Google Scholar 

  25. D Leinen, A Fernandez, J P Espinos and A R Gonzalez-Elipe, Surface Interface Anal. 20, 941 (1993)

    Article  Google Scholar 

  26. E A Perianu, I A Gorodea, F Gheorghiu, A V Sandu, A C Ianculescu, I Sandu, A R Iordan and M N Palamaru, Rev. Chim. (Bucharest) 62, 17 (2011)

    Google Scholar 

  27. L H Oliveira, A P de Moura, F A La Porta, I C Nogueira, E C Aguiar, T Sequinel, I L V Rosa, E Longo and J A Varela, Mater. Res. Bull. 81, 1 (2016)

    Article  Google Scholar 

  28. T Badapanda, S Sarangi, B Behera, P K Sahoo, S Anwar, T P Sinha, G E Luz Jr, E Longo and L S Cavalcante, Curr. Appl. Phys. 14, 708 (2014)

    Article  ADS  Google Scholar 

  29. A F Garcia Flores, D A Tenne, Y J Choi, W J Ren, X X Xi and S W Cheong, J. Phys.: Condens. Matter 23, 015401 (2011)

    ADS  Google Scholar 

  30. A Rai and A K Thakur, AIP Conf. Proc. 1728, 020491 (2016)

    Google Scholar 

  31. P Kanhere and Z Chen, Molecules 19, 19995 (2014)

    Article  Google Scholar 

  32. D K Pati, M Priyadarshini, P R Das, B N Parida and R Padhee, J. Electron. Mater. 51, 1385 (2022)

    Article  ADS  Google Scholar 

  33. L Yu, H Deng, W Zhou, H Cao, X Zhai, P Yang and J Chu, Ceram. Int. 43, 2372 (2017)

    Article  Google Scholar 

  34. H Lemziouka, L E H Omari, R Moubah, A Boutahar, S Bahhar, M Abid and H Lassri, Mater. Today. Proc. 37, 3940 (2021)

    Article  Google Scholar 

  35. M Arshad, W Khan, M Abushad, M Nadeem, S Husain, A Ansari and V K Chakradhary, Ceram. Int. 46, 27336 (2020)

    Article  Google Scholar 

  36. R Li and C Li, Adv. Catal. 60, 1 (2017)

    Google Scholar 

  37. M D I Bhuyan, S Das and M A Basith, J. Alloys Compd. 878, 160389 (2021)

    Article  Google Scholar 

  38. N K Karan, D K Pradhan, R Thomas, B Natesan and R S Katiyar, Solid State Ionics 179, 689 (2008)

    Article  Google Scholar 

  39. M A L Nobre and S Lanfredi, J. Phys. Chem. Solids 62, 1999 (2001)

    Article  ADS  Google Scholar 

  40. S Sahoo, R N P Choudhary and B K Mathur, Physica B 406, 1660 (2011)

    Article  ADS  Google Scholar 

  41. S Bhattacharjee, B Mohanty, R K Parida and B N Parida, Mater. Chem. Phys. 275, 125254 (2022)

    Article  Google Scholar 

  42. D C Sinclair and A R West, J. Appl. Phys. 66, 3850 (1989)

    Article  ADS  Google Scholar 

  43. D K Pradhan, R N P. Choudhary, C Rinaldi and R S Katiyar, J. Appl. Phys. 106, 024102 (2009)

    Article  ADS  Google Scholar 

  44. I P Raevskii, S P Kubrin, S I Raevskaya, D A Sarychev, S A Prosandeev and M A Malitskaya, Phys. Rev. B 85, 224412 (2012)

    Article  ADS  Google Scholar 

  45. Y Yang, H B Huang, J M Liu and Z G Liu, Ferroelectrics 280, 75 (2011)

    Article  ADS  Google Scholar 

  46. A V Pavlenko, A T Kozakov, S P Kubrin, A A Pavelkon, K A Guglev, L A Shilkina, I A Verbenko, D A Sarichev and L A Reznichenko, Ceram. Int. 38, 6157 (2012)

    Article  Google Scholar 

  47. P Xiaoyan, J Dongmei, L Yan and M Xueming, J. Magn. Magn. Mater. 305, 388 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of UGC-DAE CSR for providing the facility to carry out the room-temperature Mössbauer, Raman and XPS characterisations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Padhee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pati, D.K., Das, P.R. & Padhee, R. Electronic structure, optical and Mössbauer investigations of ferroelectric [Pb(Fe0.5Nb0.5)O3]0.2-[(Ca0.2Sr0.8)TiO3]0.8. Pramana - J Phys 97, 53 (2023). https://doi.org/10.1007/s12043-023-02526-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02526-z

Keywords

PACS Nos

Navigation