Skip to main content
Log in

Thermomechanical analysis of the new ferromagnetic MAX-phase compound Mn2VSnC2: Insights from DFT calculations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

MAX-phase compounds have recently gained increased technical interest owing to their distinctive characteristics that combine the inherent properties of metals and ceramics, making them suitable for various high-level industrial applications. Based on this vision, we report a detailed theoretical study of a new quaternary ferromagnetic MAX-phase compound Mn2VSnC2. We found that Mn2VSnC2 is mechanically and thermodynamically stable in α-polymorph ferromagnetic ordering. The macroscopic mechanical properties showed that Mn2VSnC2 was ductile (i.e., tolerant to damage). The obtained high melting and Debye temperatures validated the possible application of Mn2VSnC2 in harsh environmental applications. The electronic structures revealed that this compound exhibited metallic behaviour. Furthermore, we analysed the effects of pressure and temperature on different properties. Finally, the findings established that the title compound has good thermomechanical efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. T Lapauw et al, J. Eur. Ceramic Soc. 36, 1847 (2016), https://doi.org/10.1016/j.jeurceramsoc.2016.02.044

    Article  Google Scholar 

  2. W Jeitschko, H Nowotny and F Benesovsky, Monatshefte Chem. 94, 672 (1963), https://doi.org/10.1007/BF00913068

    Article  Google Scholar 

  3. M W Barsoum et al, J. Am. Ceramic Soc. 82, 2545 (1999), https://doi.org/10.1111/j.1151-2916.1999.tb02117.x

    Article  Google Scholar 

  4. C Hu et al, Scr. Mater. 57, 893 (2007), https://doi.org/10.1016/j.scriptamat.2007.07.038Get

    Article  Google Scholar 

  5. M W Barsoum, MAX-Phases: Properties of machinable ternary carbides and nitrides (Wiley-VCH, Weinheim Germany, 2013), https://doi.org/10.1002/9783527654581

  6. M W Barsoum and T El-Raghy, Am. Sci. 89, 334e343 (2001), https://www.jstor.org/stable/27857502

  7. H I Yoo, M W Barsoum and T El-Raghy, Nature 407, 581 (2000), https://doi.org/10.1038/35036686

    Article  ADS  Google Scholar 

  8. M A Hadi et al, Sci. Rep. 11, 3410 (2021), https://doi.org/10.1038/s41598-021-81346-w

    Article  ADS  Google Scholar 

  9. A Azzouz-Rached et al, Int. J. Quantum Chem. 121, e26770 (2021), https://doi.org/10.1002/qua.26770

  10. M A Hadi, J. Phys. Chem. Sol. 138, 109275 (2020), https://doi.org/10.1016/j.jpcs.2019.109275

  11. A Azzouz-Rached et al, J. Alloy Compd. 885, 160998 (2021), https://doi.org/10.1016/j.jallcom.2021.160998

  12. A A Belkacem et al, Results Phys. 38, 105621 (2022), https://doi.org/10.1016/j.rinp.2022.105621

  13. Y Rached et al, Phys. Status Solidi B 259, 2200195 (2022), https://doi.org/10.1002/pssb.202200195.

  14. A Mockute et al, Phys. Rev. B 87, 094113 (2013), https://doi.org/10.1103/PhysRevB.87.094113

  15. A Mockute et al, Phys. Status Solidi 8, 420 (2014), https://doi.org/10.1002/pssr.201409087

    Article  Google Scholar 

  16. A Petruhins et al, J. Mater. Sci. 50, 4495 (2015), https://doi.org/10.1007/s10853-015-8999-8

    Article  ADS  Google Scholar 

  17. I P Novoselova et al, Mater. Res. Lett. 7, 159 (2019), https://doi.org/10.1080/21663831.2019.1570980

    Article  Google Scholar 

  18. R Meshkian et al, APL Mater. 3, 076102 (2015), https://doi.org/10.1063/1.4926611

  19. R Salikhov et al, J. Appl. Phys. 121, 163904 (2017), https://doi.org/10.1063/1.4982197

  20. Q Tao et al, APL Mater. 4, 086109 (2016), https://doi.org/10.1063/1.4961502.

  21. P Blaha et al, The J. Chem. Phys. 152, 074101 (2020), https://doi.org/10.1063/1.5143061

  22. P Hohenberg and W Kohn, Phys. Rev. B 136, 864 (1964), https://doi.org/10.1103/PhysRev.136.B864

    Article  ADS  Google Scholar 

  23. J P Perdew and Y Wang, Phys. Rev. B 46, 12947 (1992), https://doi.org/10.1103/PhysRevB.46.12947

    Article  ADS  Google Scholar 

  24. H J Monkhorst and J D Pack, Phys. Rev. B 13, 5188 (1976), https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  25. A Azzouz-Rached et al, Mater. Today Comm. 27, 102233 (2021), https://doi.org/10.1016/j.mtcomm.2021.102233

  26. Y Rached et al, Int. J. Quantum Chem. e26875 (2021), https://doi.org/10.1002/qua.26875

  27. H Rached, Int. J. Quantum Chem. 121, e26647 (2021), https://doi.org/10.1002/qua.26647

  28. S Baroni, S De Gironcoli, A Dal Corso and P Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  29. M D Segall et al, J. Phys.: Condens. Matter 14, 2717 (2002)

    ADS  Google Scholar 

  30. B Montanari and N M Harrison, Chem. Phys. Lett. 364, 528 (2002)

    Article  ADS  Google Scholar 

  31. M Jamal et al, J. Alloys Compd 735, 569(2018), https://doi.org/10.1016/j.jallcom.2017.10.139

    Article  Google Scholar 

  32. I Ouadha et al, Comput. Condens. Matter 23, e00468 (2020), https://doi.org/10.1016/j.cocom.2020.e00468

  33. A Azzouz-Rached et al, Mater. Chem. Phys. 260, 124189 (2021), https://doi.org/10.1016/j.matchemphys.2020.124189.

  34. F Mouhat and F-X Coudert, Phys. Rev. B 90, 224104 (2014), https://doi.org/10.1103/PhysRevB.90.224104

  35. W Voigt, Lehrbuch der Kristallphysik (Taubner, Leipzig, 1928)

    MATH  Google Scholar 

  36. A Reuss, J. Appl. Math. Mech. 9, 49 (1929), https://doi.org/10.1002/zamm.19290090104

    Article  Google Scholar 

  37. R Hill, Proc. Phys. Soc. A 65, 349 (1952), https://doi.org/10.1088/0370-1298/65/5/307

    Article  ADS  Google Scholar 

  38. H Rached, S Bendaoudia and D Rached, Mater. Chem. Phys. 193, 453 (2017), https://doi.org/10.1016/j.matchemphys.2017.03.006

    Article  Google Scholar 

  39. Y Tian, B Xu and Z Zhao, Int. J. Refractory Metals Hard Mater. 33, 93 (2012), https://doi.org/10.1016/j.ijrmhm.2012.02.021

    Article  Google Scholar 

  40. A Yildirim, H Koc and E Deligoz, Chin. Phys. B 21, 037101 (2012), https://doi.org/10.1088/1674-1056/21/3/037101

  41. H M Ledbetter, J. Phys. Chem. Ref. Data 6, 1181 (1977), https://doi.org/10.1063/1.555564

    Article  ADS  Google Scholar 

  42. O L Anderson, J. Phys. Chem. Solidi 24, 909 (1963), https://doi.org/10.1016/0022-3697(63)90067-2

    Article  ADS  Google Scholar 

  43. M E Fine, L D Brown and H L Marcus, Scr. Metall. 18, 951 (1984), https://doi.org/10.1016/0036-9748(84)90267-9

    Article  Google Scholar 

  44. A Otero-de-la-Roza, D Abbasi-Pérez and V Luaña, Comput. Phys. Commun. 182, 2232 (2011), https://doi.org/10.1016/j.cpc.2011.05.009

    Article  ADS  Google Scholar 

  45. R Fox, the British J. History Sci. 4, 1 (1968), https://doi.org/10.1017/S0007087400003150

    Article  Google Scholar 

  46. I Asfour, H Rached, S Benalia and D Rached, J. Alloys Compds 676, 440 (2016), https://doi.org/10.1016/j.jallcom.2016.03.075

    Article  Google Scholar 

  47. M E A Belhadj, H Rached, D Rached and S Amari, Comput. Condensed Matter 16, e00295 (2018), https://doi.org/10.1016/j.cocom.2018.e00295

Download references

Acknowledgements

The author acknowledge the funding provided by the Direction Générale de la Recherche Scientifique et du Développement Technologique (Grant No. B00L02UN220120190002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Rached.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouadha, I., Azzouz-Rached, A., Rached, H. et al. Thermomechanical analysis of the new ferromagnetic MAX-phase compound Mn2VSnC2: Insights from DFT calculations. Pramana - J Phys 97, 57 (2023). https://doi.org/10.1007/s12043-023-02524-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02524-1

Keywords

PACS Nos

Navigation