Skip to main content
Log in

Control, synchronisation and antisynchronisation of chaos in two non-identical Josephson junction models via sliding mode control and its FPGA implementation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The control, synchronisation and antisynchronisation of chaos in Josephson junction (JJ) and linear piecewise JJ models via sliding mode control method are investigated in this paper. Thanks to the Routh–Hurwitz stability criterion, the sliding mode controllers are designed to control chaos in JJ models and achieve synchronisation schemes between two non-identical JJ models. Numerical simulations are shown to clarify and confirm the chaos control and synchronisation schemes. Finally, field programmable gate array (FPGA) implementation is designed to reproduce the above-mentioned results and its correctness is confirmed using the FPGA analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. B D Josephson, Phys. Lett1(7), 251 (1962)

    Article  ADS  Google Scholar 

  2. V N Belykh, N F Pedersen and O H Soerensen, Phys. Rev. B 16, 4860 (1977)

    Article  ADS  Google Scholar 

  3. V N Belykh, N F Pedersen and O H Soerensen, Phys. Rev. B 16, 4853 (1977)

    Article  ADS  Google Scholar 

  4. J P Crutchfield, J D Farmer and B A Huberman, Phys. Rep92(2), 45 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  5. K K Likharev, Dynamics of Josephson junctions and circuits (Springer, New York, 1986)

  6. S K Dana, D C Sengupta and K D Edoh, IEEE Trans. Circuits Syst. I 48, 990 (2001)

    Article  Google Scholar 

  7. C B Whan, A B Cawthorne and C J Lobb, Phys. Rev. B 53, 12340 (1996)

    Article  ADS  Google Scholar 

  8. A B Cawthorne, C B Whan and C J Lobb, J. Appl. Phys84, 1126 (1998)

    Article  ADS  Google Scholar 

  9. X S Yang and Q Li, Chaos Solitons Fractals 27, 25 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. D W Wu and C R Liu, J. Eng. Ind107, 107 (2014)

    Article  Google Scholar 

  11. S K Dana, D C Sengupta and K D Edoh, IEEE Trans Circuits Syst. I 48, 990 (2001)

    Article  Google Scholar 

  12. S T Kingni, G F Kuiate, R Kengne, R Tchitnga and P Woafo, Complexity 2017, 4107358 (2017)

    Google Scholar 

  13. D E McCumber, Appl. Phys39, 3113 (1968)

    Article  Google Scholar 

  14. O A Mukhanov, S V Rylov, D V Gaidarenko, N B Dubash and V V Borzenets, IEEE Trans. Appl. Supercond7, 2826 (1997)

    Article  ADS  Google Scholar 

  15. D Y Chen, W L Zhao, X Y Ma and R F Zhang, Abs. Appl. Anal2012, 378457 (2012)

    Google Scholar 

  16. D Y Chen, W L Zhao, X Y Ma and R F Zhang, Comput. Math. Appl61, 3161 (2011)

    Article  MathSciNet  Google Scholar 

  17. D Y Chen, R F Zhang X Y Ma and S Liu, Nonlinear Dyn69, 35 (2011)

    Article  Google Scholar 

  18. D Y Chen, L Shi, H T Chen and X Y Ma, Nonlinear Dyn. 67, 1745 (2012)

    Article  Google Scholar 

  19. J M Dias and A Dourado, Fuzzy Sets Syst103, 27 (1999)

    Article  Google Scholar 

  20. Z Ruo-Xun and Y Shi-Ping, Chin. Phys. B 18, 3295 (2009)

    Article  ADS  Google Scholar 

  21. J Ma, Q Y Wang, W Y Jin and Y F Xia, Chin. Phys. Lett. 25, 3582 (2008)

    Article  ADS  Google Scholar 

  22. M Rafikov and J M Balthazar, Commun. Nonlinear Sci. Numer. Simul. 13, 1246 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. N Wang, H Zhao, X Wang and H Liang, T. Adv. Mater. Res. 462, 866 (2012)

    Google Scholar 

  24. A S de Paula and M A Savi, Chaos Solitons Fractals 40, 1376 (2009)

    Article  ADS  Google Scholar 

  25. K K Likharev and V K Semenov, IEEE Trans. Appl. Supercond. 1, 3 (1991)

    Article  ADS  Google Scholar 

  26. F Muller, H Schulze, R Behr, J Kohlmann and J Niemeyer, Physica C 354, 66 (2001)

    Article  ADS  Google Scholar 

  27. E Il’ichev, G S Krivoy and R P J Isselsteijn, Physica C 377, 516 (2002)

    Article  ADS  Google Scholar 

  28. B Yurke, R Movshovich, P G Kaminsky, A D Smith, A H Silver, R W Simon, M V Schneider and R Trambarulo, Phys. B Condens. Matter 169(1–4), 432 (1991)

    Article  ADS  Google Scholar 

  29. R Guo, U E Vincent and B A Idowu, Phys. Scr. 79(3), 035801 (2009)

    Article  ADS  Google Scholar 

  30. T Yang and L O Chua, IEEE Trans. Circuits Syst44, 469 (1997)

    Article  Google Scholar 

  31. L Finger and V Tavsanoglu, IEEE Trans. Circuits SystI 44(5), 438 (1997)

    Article  Google Scholar 

  32. D Biswas and T Banerjee, Time-delayed chaotic dynamical systems: from theory to electronic experiment (Springer-Nature, 2018)

  33. T Banerjee and D Biswas, Nonlinear Dyn73, 2025 (2013)

    Article  Google Scholar 

  34. T Banerjee, D Biswas and B C Sarkar, Nonlinear Dyn72, 321 (2013)

    Article  Google Scholar 

  35. T Banerjee, D Biswas and B C Sarkar, Nonlinear Dyn71, 279 (2013)

    Article  Google Scholar 

  36. T Khatun, D Biswas and T Banerjee, Eur. Phys. J. Plus 137, 561 (2022)

    Article  Google Scholar 

  37. Y Zhao and W Wang, Chaos Solitons Fractals 41, 60 (2009)

    Article  ADS  Google Scholar 

  38. J A Blackburn, G L Baker and H J T Smith, Phys. Rev. B 62, 5931 (2000)

    Article  ADS  Google Scholar 

  39. J Wang, X Zhang, G You and F Zhou, J. Phys. A Math. Theor. 40, 3775 (2007)

    Article  ADS  Google Scholar 

  40. S K Dana, P K Roy, G C Sethia, A Sen and D C Sengupta, IEE Proc. Circ. Dev. Syst. 153(5), 453 (2006)

  41. A Ucar, K E Lonngren and E W Bai, Chaos Solitons Fractals 31, 105 (2007)

    Article  ADS  Google Scholar 

  42. J J Yan, C F Huang and J S Lin, Nonlinear Anal. Real World Appl. 10, 3091 (2009)

    Article  MathSciNet  Google Scholar 

  43. M B Gaifullin, K Hirata, S Ooi, S Savel’ev, Y I Latyshev and T Mochiku, Physica C 468, 1896 (2008)

    Article  ADS  Google Scholar 

  44. G Filatrella and N F Pedersen, Physica C 408, 560 (2004)

    Article  ADS  Google Scholar 

  45. W X Qin and G Chen, Physica D 197, 375 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  46. U E Vincent, A Ucar, J A Laoye and S O Kareem, Physica C 468, 374 (2008)

    Article  ADS  Google Scholar 

  47. A N Njah, K S Ojo, G A Adebayo and A O Obawole, Physica C 470, 558 (2010)

    Article  ADS  Google Scholar 

  48. E Tlelo-Cuautle, A D Pano-Azucena and J J Rangel-Magdaleno, Nonlinear Dyn85, 2143 (2016)

    Article  Google Scholar 

  49. Q Wang, S Yu and C Li, IEEE Trans. Circ. Syst. I Regul. Papers 63, 401 (2016)

    Article  Google Scholar 

  50. E Dong, Z Liang and S Du, Nonlinear Dyn. 83, 623 (2016)

    Article  Google Scholar 

  51. R Woods, J McAllister, G Lightbody and Y Yi, FPGA-based implementation of signal processing systems (John Wiley & Son, 2017)

  52. Z Wei, K Rajagopal, W Zhang, S T Kingni and A Akgül, Pramana – J. Phys90, 50 (2018)

    Article  ADS  Google Scholar 

  53. F X Ngagoum Tchamdjeu, U G Ngouabo, S Noubissie, R C Gamom Ngounou Ewo and H B Fotsin, Pramana – J. Phys. 96, 13 (2022)

    Article  ADS  Google Scholar 

  54. E Tlelo-Cuautle, V Carbajal-Gomez, P Obeso-Rodelo, J Rangel-Magdaleno and J C Nuñez-Perez, Nonlinear Dyn82, 1879 (2015)

    Article  Google Scholar 

  55. V Rashtchi and M Nourazar, Circ. Syst. Signal Process34, 3101 (2015)

    Article  Google Scholar 

  56. X Ya-Ming, W Li-Dan and D Shu-Kai, Acta Phys. Sin. 65(12), 120503 (2016)

    Article  Google Scholar 

  57. E Tlelo-Cuautle, J Rangel-Magdaleno, A Pano-Azucena, P Obeso-Rodelo and J C Nuñez-Perez, Commun. Nonlinear Sci. Numer. Simul27, 66 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  58. N Njah, Nonlinear Dyn61, 1 (2010)

    Article  MathSciNet  Google Scholar 

  59. K Rajagopal, L Guessas, A Karthikeyan, A Srinivasan and G Adam, Complexity 2017, 1892618 (2017)

    Google Scholar 

  60. K Rajagopal, L Guessas, S Vaidyanathan, A Karthikeyan and A Srinivasan, Math. Probl. Eng. 2017, 7307452 (2017)

    Article  Google Scholar 

  61. K Rajagopal, A Karthikeyan and A K Srinivasan, Nonlinear Dyn87, 2281 (2017)

    Article  Google Scholar 

  62. O S Onma, O I Olusola and A N Njah, J. Nonlinear Dyn2014, 861727 (2014)

    Google Scholar 

Download references

Acknowledgements

This work is partially funded by the Centre for Nonlinear Systems, Chennai Institute of Technology, India via funding number CIT/CNS/2021/RD/009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules Metsebo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishnan, B., Tamba, V.K., Metsebo, J. et al. Control, synchronisation and antisynchronisation of chaos in two non-identical Josephson junction models via sliding mode control and its FPGA implementation. Pramana - J Phys 97, 46 (2023). https://doi.org/10.1007/s12043-023-02520-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02520-5

Keywords

PACS Nos

Navigation