Skip to main content
Log in

Off-shell scattering by an approximated additive interaction

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We present all the partial wave descriptions of the nucleon–nucleus system by proposing a new additive phenomenological potential with emphasis on off-energy-shell scattering. For most of the general treatment of the physical processes, the off-shell transition matrices are most expedient quantities because they carry as much information as the potential. As the off-shell Jost solution is an indispensable ingredient for deriving transition matrices, we initially construct this function by taking into account the ordinary differential equation method. Finally, we execute certain tests on our expressions with respect to various limiting conditions and present numerical results using the MATLAB programme. Numerical results are in sensible conformity with the previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L Hulthén, Ark. Mat. Astro. Fys. 29B, 1 (1942)

    MathSciNet  Google Scholar 

  2. J Bhoi and U Laha, J. Phys. G: Nucl. Part. Phys. 40, 045107 (2013)

    Article  ADS  Google Scholar 

  3. J Bhoi and U Laha, Theor. Math. Phys. 190, 69 (2017)

    Article  Google Scholar 

  4. J Bhoi and U Laha, Pramana – J. Phys. 88, 42 (2017)

    Google Scholar 

  5. P Sahoo, U Laha and A K Behera, Phys. At. Nucl. 83, 802 (2020)

    Article  Google Scholar 

  6. A F Nikifirov and V B Uvarov, Special functions of mathematical physics (Basel, Birkhauser, 1988)

    Book  Google Scholar 

  7. S Ikhdair, Int. Sch. Res. Network ISRN Math. Phys. 20, 201525 (2012)

  8. C Berkdemir and J Han, Chem. Phys. Lett. 409, 203 (2005)

    Article  ADS  Google Scholar 

  9. A I Ahmadov et al, Int. J. Mod. Phys. A 33, 1850021 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. P Sahoo, U Laha, B Khirali and A K Behera, Rep. Math. Phys. 88, 295 (2021)

    Article  MathSciNet  Google Scholar 

  11. W C Qiang, K Li and W L Chen, J. Phys. A: Math. Theor. 42, 205306 (2009)

    Article  ADS  Google Scholar 

  12. W C Qiang and S H Dong, Phys. Scr. 79, 045004 (2009)

    Article  ADS  Google Scholar 

  13. P Sahoo and U Laha, Pramana – J. Phys. 96, 15 (2022)

    Google Scholar 

  14. P Sarkar, B Khirali, U Laha and P Sahoo, Int. J. Mod. Phys. E 30, 2150066 (2021)

    Article  ADS  Google Scholar 

  15. K L Kowalski, Phys. Rev. C 8, 1973 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  16. B Talukdar, M N Sinha Roy, N Mallick and D K Nayek, Phys. Rev. C 12, 370 (1975)

    Article  ADS  Google Scholar 

  17. H van Haeringen, J. Math. Phys. 16, 1441 (1975)

    Article  ADS  Google Scholar 

  18. H van Haeringen, J. Math. Phys. 24, 1267 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  19. S K Adhikari and K L Kowalski, Dynamical collision theory and its applications (Academic Press, New York, 1991)

    Google Scholar 

  20. U Laha and J Bhoi, Phys. Rev. C 88, 064001 (2013)

    Article  ADS  Google Scholar 

  21. S A Morgan, M D Lee and K Burnett, Phys. Rev. A 65, 022706 (2002)

    Article  ADS  Google Scholar 

  22. T Takemiya and H Nakamura, Prog. Theor. Phys. 52, 1248 (1974)

    Article  ADS  Google Scholar 

  23. O P Baheti and M G Fuda, J. Math. Phys. 12, 2076 (1971)

    Article  ADS  Google Scholar 

  24. P Sahoo, U Laha and B Khirali, Chin. J. Phys. 73, 561 (2021)

    Article  Google Scholar 

  25. U Laha and J Bhoi, J. Math. Phys. 54, 013514 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. U Laha and B Talukdar, Pramana – J. Phys. 36, 289 (1991)

    Google Scholar 

  27. M G Fuda and J S Whiting, Phys. Rev. C 8, 1255 (1973)

    Article  ADS  Google Scholar 

  28. U Laha and J Bhoi, Few-Body Syst. 54, 1973 (2013)

    Article  ADS  Google Scholar 

  29. B Khirali, U Laha, A K Behera and P Sahoo, Pramana – J. Phys. 95, 179 (2021)

    Google Scholar 

  30. M G Fuda and J S Whiting, Phys. Rev. C 8, 1255 (1973)

    Article  ADS  Google Scholar 

  31. U Laha and J Bhoi, Pramana – J. Phys. 86, 947 (2015)

    Google Scholar 

  32. P Sahoo and U Laha, Can. J. Phys. 100, 68 (2022)

    Article  ADS  Google Scholar 

  33. L J Slater, Generalized hypergeometric functions (Cambridge University Press, London, 1966)

    MATH  Google Scholar 

  34. A Erdeyli, Higher transcendental functions (McGraw-Hill, New York, 1953) Vol. 1

  35. W Magnus and F Oberhettinger, Formulae and theorems for the special functions of mathematical physics (Chelsea, New York, 1949)

    MATH  Google Scholar 

  36. R G Newton, Scattering theory of waves and particles, 2nd Edn (McGraw-Hill, New York, 1982)

    Book  MATH  Google Scholar 

  37. R Jost, Helv. Phys. Acta 20, 256 (1947)

    Google Scholar 

  38. A W Babister, Transcendental functions satisfying non-homogeneous linear differential equations (MacMillan, New York, 1967)

    MATH  Google Scholar 

  39. I S Gradshteyn and I M Ryzhik, Tables of integrals, series and products (Academic Press, London, 2000)

    MATH  Google Scholar 

  40. P Sahoo, U Laha, B Khirali and A K Behera, Braz. J. Phys. 51, 1478 (2021)

    Article  ADS  Google Scholar 

  41. U Laha and J Bhoi, Hadron-hadron scattering within the separable model of interactions (Scholars’ Press, Beau Bassin, 2018)

    Google Scholar 

  42. J Haidenbauer and W Plessas, Phys. Rev. C 30, 1822 (1984)

    Article  ADS  Google Scholar 

  43. C R Chen, G L Payne, J L Friar and B F Gibson, Phys. Rev. C 39, 1261 (1989)

    Article  ADS  Google Scholar 

  44. S Ishikawa, Few-Body Syst. 32, 229 (2003)

    ADS  Google Scholar 

  45. R Machleidt, F Sammarruca and Y Song, Phys. Rev. C 53, 1483 (1996)

    Article  ADS  Google Scholar 

  46. R B Wiringa, V G J Stoks and R Schiavilla, Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  47. V G J Stoks, R A M Klomp, M C M Rentmeester and J J de Swart, Phys. Rev. C 48, 792 (1993)

    Article  ADS  Google Scholar 

  48. V G J Stoks, R A M Klomp, C P F Terheggen and J J de Swart, Phys. Rev. C 49, 2950 (1994)

    Article  ADS  Google Scholar 

  49. M C M Rentmeester, R G E Timmermans, J L Friar and J J de Swart, Phys. Rev. Lett. 82, 4992 (1999)

    Article  ADS  Google Scholar 

  50. K Sagara et al, Phys. Rev. C 50, 576 (1994)

    Article  ADS  Google Scholar 

  51. E Huttel, W Arnold, H Baumgart, H Berg and G Clausnitzer, Nucl. Phys. A 406, 443 (1983)

    Article  ADS  Google Scholar 

  52. A Deltuva, A C Fonseca, A Kievsky, S Rosati, P U Sauer and M Viviani, Phys. Rev. C 71, 064003 (2005)

    Article  ADS  Google Scholar 

  53. A Deltuva, A C Fonseca and P U Sauer, Phys. Rev. C 71, 054005 (2005)

    Article  ADS  Google Scholar 

  54. I Skwira-Chalot et al, Few-Body Syst. 62, 92 (2021)

    Article  ADS  Google Scholar 

  55. C C Kim et al, Nucl. Phys. 58, 32 (1964)

    Article  Google Scholar 

  56. V I Grantsev et al, Ukr. Fiz. Zh. 28, 506 (1983)

    Google Scholar 

  57. H Shimizu et al, Nucl. Phys. A 382, 242 (1982)

    Article  ADS  Google Scholar 

  58. K Sekiguchi et al, Phys. Rev. C 65, 34003 (2002)

    Article  ADS  Google Scholar 

  59. M Davidson et al, Nucl. Phys. 45, 423 (1963)

    Article  Google Scholar 

  60. O Chamberlain et al, Phys. Rev. 94, 666 (1954)

    Article  ADS  Google Scholar 

  61. K Ermisch et al, Phys. Rev. C 71, 064004 (2005)

    Article  ADS  Google Scholar 

  62. L D Faddeev, Sov. Phys. JETP. 12, 1014 (1961)

    Google Scholar 

  63. N R Sharma and B K Jain, Nucl. Phys. A 377, 201 (1982)

    Article  ADS  Google Scholar 

  64. L P Kok, J E Holwerda and J W de Maag, Phys. Rev. C 27, 2548 (1983)

    Article  ADS  Google Scholar 

  65. W van Dijk and M Razavy, Nucl. Phys. A 204, 412 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Laha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, P., Laha, U. & Swain, B. Off-shell scattering by an approximated additive interaction. Pramana - J Phys 97, 62 (2023). https://doi.org/10.1007/s12043-023-02519-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02519-y

Keywords

PACS Nos

Navigation