Skip to main content
Log in

Stability analysis of LRS Bianchi type-I cosmological model with varying \(\Lambda \)

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we deal with locally rotationally symmetric Bianchi type-I cosmological model with varying cosmological constant. Here, we have considered two models. In Model I, we have analysed total linear stability analysis for linear coupling between the dark sector of the Universe whereas in Model II, the quadratic coupling between the dark sector of the Universe is considered. The cosmological history of the models is studied by finding all the critical points and analysing their local stability. We study the behaviour of all the critical points of the model when they are hyperbolic in nature using the linear Jacobi stability analysis and when they are non-hyperbolic in nature using centre manifold theory. The perseverance of the equilibrium points is illustrated in phase portraits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P A R Ade et al, Astron. Astrophys. 571, A16 (2014)

    Article  Google Scholar 

  2. P A R Ade et al, Astron. Astrophys. 594, A13 (2016)

    Article  Google Scholar 

  3. M Betoule et al, Astron. Astrophys. 568, A22 (2014)

    Article  Google Scholar 

  4. S Perlmutter et al, Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  5. A G Riess et al, Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  6. S Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  Google Scholar 

  7. T Padmanabhan, Phys. Rep. 380, 235 (2003)

  8. A Padilla, arXiv:1502.05296 (2015)

  9. L Perivolaropoulos, arXiv:0811.4684 (2008)

  10. H A Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970)

    Article  ADS  Google Scholar 

  11. B Ratra and P J E Peebles, Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  12. G R Bengochea and R Ferraro, Phys. Rev. D 79, 124019 (2009)

    Article  ADS  Google Scholar 

  13. A Nicolis, R Rattazzi and E Trincherini, Phys. Rev. D 79, 064036 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. S Tsujikawa, Class. Quant. Grav. 30, 214003 (2013)

    Article  ADS  Google Scholar 

  15. L A Urena-Lopez, J. Phys. Conf. Ser. 761, 012076 (2016)

    Article  Google Scholar 

  16. A Paliathanasis, J D Barrow and P G L Leach, Phys. Rev. D 94, 023525 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. S Nojiri, S D Odintsov and V K Oikonomou, Phys. Lett. B 775, 55 (2017)

    Article  Google Scholar 

  18. S Basilakos, N Mavromatos and J Sola, Universe 2, 14 (2016)

    Article  ADS  Google Scholar 

  19. P Tsiapi and S Basilakos, Mon. Not. R. Astron. Soc. 485, 2505 (2019)

  20. J A S Lima, S Basilakos and J Sola, Mon. Not. R. Astron. Soc. 431, 923 (2013)

    Article  ADS  Google Scholar 

  21. S Basilakos, J Lima and J Sola, Int. J. Mod. Phys. D 22, 1342008 (2013)

    Article  ADS  Google Scholar 

  22. E L D Perico, J A S Lima, S Basilakos and J Sola, Phys. Rev. D 88, 063531 (2013)

    Article  ADS  Google Scholar 

  23. R G Vishwakarma, Quantum Gravity 19, No. 18, 4747, (2002)

    Article  MathSciNet  Google Scholar 

  24. S del Campo, R Herrera and D Pavón, J. Cosmol. Astropart. Phys. 0901, 020 (2009)

    Article  Google Scholar 

  25. J Väliviita, R Maartens and E Majerotto, Mon. Not. R. Astron. Soc. 402, 2355 (2010)

    Article  ADS  Google Scholar 

  26. S Pan, S Bhattacharya and S Chakraborty, Mon. Not. R. Astron. Soc. 452, 3038 (2015)

    Article  ADS  Google Scholar 

  27. M Quartin, M O Calvao, S E Joras, R R R Reis and I Waga, J. Cosmol. Astropart. Phys. 0805, 007 (2008)

    Article  ADS  Google Scholar 

  28. W Yang, N Banerjee, A Paliathanasis and S Pan, Phys. Dark Univ. 26, 100383 (2019)

    Article  Google Scholar 

  29. Y L Bolotin, A Kostenko, O A Lemets and D A Yerokhin, Int. J. Mod. Phys. D 24, 1530007 (2015)

    Article  ADS  Google Scholar 

  30. B Wang, E Abdalla, F Atrio-Barandela and D Pavon, Rep. Prog. Phys. 79, 096901 (2016)

    Article  ADS  Google Scholar 

  31. S Pan, Sharov, S German and W Yang, Phys. Rev. D 101, 103533 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  32. S M Carroll, Phys. Rev. Lett. 81, 3067 (1998)

    Article  ADS  Google Scholar 

  33. T Damour, G W Gibbons and C Gundlach, Phys. Rev. Lett. 64, 123 (1990)

    Article  ADS  Google Scholar 

  34. J Väliviita, E Majerotto, R Maartens, arXiv0804.0232 (2008)

  35. S Pan, W Yang, E Valentino, E N Saridakis and S Chakraborty, Phys. Rev. D 100, 103520 (2019)

    Article  ADS  Google Scholar 

  36. W Yang, N Banerjee, S Pan, L Saló Aresté and Jaume de Haro, Phys. Rev. D 103, 083520 (2021)

    Article  ADS  Google Scholar 

  37. H Amirhashchi and S Amirhashchi, Phys. Rev. D 99, 023516 (2019)

  38. G F R Ellis, Gen. Relativ. Gravit. 38, 1003 (2006)

    Article  ADS  Google Scholar 

  39. M P Ryan and L C Shpley, Homogeneous relativistic cosmologies (Princeton University Press, Princeton, 1975)

    Google Scholar 

  40. H Amirhashchi, Phys. Lett. B 697, 429 (2011)

    Article  ADS  Google Scholar 

  41. Angit S, R Raushan and R Chaubey, Int. J. Geo. Meth. in Mod. Phys. 16, 1950127 (2019)

    Article  MathSciNet  Google Scholar 

  42. C G Bohmer, G C Cabral, N Chan, R Lazkoz and R Maartens, Phys. Rev. D 81, 083003 (2010)

    Article  ADS  Google Scholar 

  43. G C Cabral, R Maartens and L A Lopez, Phys. Rev. D 79, 063518 (2009)

    Article  ADS  Google Scholar 

  44. E J Copeland, A R Liddle and D Wands, Phys. Rev. D 57, 4686 (1998)

    Article  ADS  Google Scholar 

  45. R Raushan and R Chaubey, Can. J. Phys. 95, 11 (2017)

    Article  Google Scholar 

  46. R Raushan et al, Int. J. Geom. Meth. Mod. Phys. 17, 2050064 (2020)

    Article  MathSciNet  Google Scholar 

  47. R G Salcedo et al, Eur. J. Phys. 32, 025008 (2015)

    Article  Google Scholar 

  48. N Tamanini, Phys. Rev. D 89, 083521 (2014)

    Article  ADS  Google Scholar 

  49. Rakesh Raushan, S Angit and R Chaubey, Eur. Phys. J. Plus 136, 440 (2021)

    Article  Google Scholar 

  50. S Angit, R Raushan and R Chaubey, Pramana – J. Phys. 96, 123 (2022)

    Article  ADS  Google Scholar 

  51. S Mishra and S Chakraborty, Eur. Phys. J. C 79, 328 (2019)

    Article  ADS  Google Scholar 

  52. G Papagiannopoulos et al, Eur. Phys. J. C 80, 55 (2020)

    Article  ADS  Google Scholar 

  53. S Wiggins, Introduction to applied nonlinear dynamical systems and chaos (Springer, New York, 2006)

    MATH  Google Scholar 

  54. J Carr, Applications of centre manifold theory (Springer, New York, 2012)

    MATH  Google Scholar 

  55. H K Khalil, Nonlinear systems (Pearson, 2002)

  56. L Perko, Differential equations and dynamical systems (Springer, New York, 2013)

    MATH  Google Scholar 

  57. A S Kompaneets and A S Chernov, Sov. Phys. JETP 20, 1303 (1965)

    Google Scholar 

  58. R Kantowski and R K Sachs, J. Math. Phys. 7, 443 (1996)

    Article  ADS  Google Scholar 

  59. K S Thorne, Astrophys. J. 148, 51 (1967)

    Article  ADS  Google Scholar 

  60. C B Collins and S W Hawking, Astrophys. J. 180, 317 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  61. C B Collins, Phys. Lett. A 60, 397 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  62. C B Collins, E N Glass and D A Wilkinson, Gen. Relativ. Grav. 12, 10 (1980)

    Article  Google Scholar 

  63. S R Roy and S K Banerjee, Class. Quantum Gravity 11, 1943 (1995)

    Article  ADS  Google Scholar 

  64. W X Xiang, Chin. Phys. Lett. 22, 29 (2005)

    Article  ADS  Google Scholar 

  65. R Bali and P Kumawat, Phys. Lett. B 665, 332 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  66. M Sharif and R Saleem, Eur. Phys. J. C 74, 2738 (2014)

    Article  ADS  Google Scholar 

  67. M F Sharif, Eur. Phys. J. C 75, 354 (2015)

    Article  ADS  Google Scholar 

  68. M F Shamir and F Kanwal, Eur. Phys. J. C 77, 286 (2017)

    Article  ADS  Google Scholar 

  69. R Murgia, S Gariazzo and N Fornengo, J. Cosmol. Astropart. Phys. 2016, 014 (2016)

Download references

Acknowledgements

The authors are thankful to the anonymous reviewer for the constructive remarks, which helped us to improve the paper. RC is thankful to the Incentive Grant under IOE, BHU for financial assistance. AS is thankful to UGC, New Delhi for its support to this work through a Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Chaubey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angit, S., Raushan, R. & Chaubey, R. Stability analysis of LRS Bianchi type-I cosmological model with varying \(\Lambda \). Pramana - J Phys 97, 42 (2023). https://doi.org/10.1007/s12043-023-02513-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02513-4

Keywords

PACS Nos

Navigation