Skip to main content
Log in

A study on Darboux polynomials and their significance in determining other integrability quantifiers: A case study in third-order nonlinear ordinary differential equations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we present a method for deriving quantifiers of the extended Prelle–Singer (PS) method using Darboux polynomials for third-order nonlinear ordinary differential equations. By knowing the Darboux polynomials and their co-factors, we extract the extended PS method’s quantities without evaluating the PS method’s determining equations. We consider three different cases of known Darboux polynomials. In the first case, we prove the integrability of the given third-order nonlinear equation by utilising the quantifiers of the PS method from the two known Darboux polynomials. If we know only one Darboux polynomial, then the integrability of the given equation will be dealt as Case 2. Likewise, Case 3 discusses the integrability of the given system where we have two Darboux polynomials and one set of PS method quantity. The established interconnection not only helps in deriving the integrable quantifiers without solving the underlying determining equations, but also provides a way to prove the complete integrability and helps us in deriving the general solution of the given equation. We demonstrate the utility of this procedure with three different examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R C Mittal and S Pandit, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 89, 799 (2019)

    Article  Google Scholar 

  2. R Jiwari, V Kumar and S Singh, Eng. Comput. 38, 2027 (2022)

    Article  Google Scholar 

  3. O P Yadav and R Jiwari, Nonlinear Dyn. 95, 2825 (2019)

    Article  Google Scholar 

  4. A Verma, R Jiwari and M E Koksal, Adv. Differ. Eqs. 2014, 229 (2014)

    Article  Google Scholar 

  5. J G Liu and M S Osman, Chin. J. Phys. 77, 1618 (2022)

    Article  Google Scholar 

  6. J G Liu and H Zhao, Chin. J. Phys. 77, 985 (2022)

    Article  Google Scholar 

  7. W H Zhu, F Y Liu and J G Liu, Nonlinear Dyn. 108, 4171 (2022)

    Article  Google Scholar 

  8. J G Liu, A M Wazwaz, R F Zhang, Z Z Lan and W H Zhu, J. Appl. Anal. Comput. 12, 2426 (2022)

  9. Integrability, in: Encyclopedia of nonlinear science edited by A Scott (Taylor & Francis, 2005) pp. 250–253

  10. W-X Ma, Disc. Contin. Dyn. Syst. – S, 11(4), 707 (2018)

    Google Scholar 

  11. W-X Ma, Commun. Theor. Phys. 74, 065002 (2022)

    Article  ADS  Google Scholar 

  12. P J Olver, Equivalence, invariants, and symmetry (Cambridge University Press, Cambridge, 1995)

    Book  MATH  Google Scholar 

  13. J Llibre, Handbook of differential equations: Ordinary differential equations edited by A Cañada, P Drábek and A Fonda (Elsevier Ltd., UK, 2000) Vol. 1, pp. 439–528

  14. G W Bluman and S C Anco Kumei, Symmetries and integration methods for differential equations (Springer-Verlag, New York, 2002)

    MATH  Google Scholar 

  15. N H Ibragimov, Elementary Lie group analysis and ordinary differential equation (Wiley, New York, 1999)

    MATH  Google Scholar 

  16. W H Steeb, Invertible point transformations and nonlinear differential equations (World Scientific, London, 1993)

    Book  MATH  Google Scholar 

  17. G Manno, F Oliveri, G Saccomandi and R Vitolo, J. Geom. Phys. 85, 2 (2014)

    Article  ADS  Google Scholar 

  18. M Prelle and M Singer, Trans. Am. Math. Soc. 279, 215 (1983)

    Article  Google Scholar 

  19. V K Chandrasekar, M Senthilvelan and M Lakshmanan, J. Nonlinear Math. Phys. 12, 184 (2005)

    Article  ADS  Google Scholar 

  20. V K Chandrasekar, M Senthilvelan and M Lakshmanan, Proc. R. Soc. A 462, 1831 (2006)

    Article  ADS  Google Scholar 

  21. P R Gordoa, A Pickering and M Senthilvelan, J. Math. Phys. 55, 053510 (2014)

    Article  ADS  Google Scholar 

  22. L G S Duarte, S E S Duarte, A C P da Mota and J E F Skea, J. Phys. A 34, 3015 (2001)

    Article  ADS  Google Scholar 

  23. O Orhan and T Özer, Adv. Diff. Eqs 1, 259 (2016)

    Article  Google Scholar 

  24. G Darboux, Bull. Sci. Math. 2, 60,123,151 (1878)

  25. J Llibre, Symmetry 13, 1736 (2021)

    Article  ADS  Google Scholar 

  26. J Llibre, R Ramirez and M Ramirez, J. Geom. Phys. 168, 104308 (2021)

    Article  Google Scholar 

  27. C Christopher and J Giné, Chaos Solitons Fractals 146, 110821 (2021)

    Article  Google Scholar 

  28. J Llibre and C Valls, Disc. Cont. Dyn. Syst. 21, 557 (2016)

    Google Scholar 

  29. J F Cariñena, J de Lucas and M F Rañada, J. Math. Phys. 56, 063505 (2015)

  30. M C Nucci and P G L Leach, Phys. Scr. 78, 065011 (2008)

    Article  ADS  Google Scholar 

  31. M C Nucci and P G L Leach, J. Nonlinear Math. Phys. 12, 305 (2005)

    Article  ADS  Google Scholar 

  32. A Ruiz and C Muriel, Appl. Math. Comput. 339, 888 (2018)

    Google Scholar 

  33. C Muriel, J L Romero and A Ruiz, IMA J. Appl. Math. 82, 1061 (2017)

  34. C Muriel and J L Romero, J. Phys. A: Math. Theor. 42, 365207 (2009)

    Article  Google Scholar 

  35. C Muriel and J L Romero, SIGMA 8, 106 (2012)

    Google Scholar 

  36. C Muriel and J L Romero, IMA J. Appl. Math. 66, 111 (2001)

  37. A Bhuvaneswari, V K Chandrasekar, M Senthilvelan and M Lakshmanan, J. Math. Phys. 53, 073504 (2012)

    Article  ADS  Google Scholar 

  38. Y Wei, H Xin-Dang and Y Xiao-Feng, Open Math. 14, 816 (2016)

  39. E Pucci and G Saccomandi, J. Phys. A: Math. Gen. 35, 6145 (2002)

    Article  ADS  Google Scholar 

  40. G Gaeta, J. Nonlinear Math. Phys. 4, 21 (2014)

    Google Scholar 

  41. R Mohanasubha and M Senthilvelan, Commun. Nonlinear Sci. Numer. Simul. 43, 111 (2017)

    Article  ADS  Google Scholar 

  42. R Mohanasubha, M I Sabiya Shakila and M Senthilvelan, Commun. Nonlinear Sci. Numer. Simul. 19, 799 (2014)

    Article  ADS  Google Scholar 

  43. R Gladwin Pradeep, V K Chandrasekar, R Mohanasubha, M Senthilvelan and M Lakshmanan, Commun. Nonlinear Sci. Numer. Simul. 36, 303 (2016)

  44. M Manoranjini, R Mohanasubha, V K Chandrasekar and M Senthilvelan, Int. J. Nonlinear Mech. 118, 103284 (2020)

    Article  ADS  Google Scholar 

  45. R Mohanasubha, V K Chandrasekar, M Senthilvelan and M Lakshmanan, Proc. R. Soc. A 471, 20140720 (2015)

    Article  ADS  Google Scholar 

  46. R Mohanasubha, V K Chandrasekar, M Senthilvelan and M Lakshmanan, Proc. R. Soc. A 472, 20150847 (2016)

    Article  ADS  Google Scholar 

  47. N Euler and M Euler, J. Nonlinear Math. Phys. 11, 399 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of MS forms part of a research project sponsored by National Board for Higher Mathematics (NBHM), Government of India, under Grant No. 02011/20/2018 NBHM(RP)/R &D II/15064. RMS is funded by the Centre for Computational Modeling, Chennai Institute of Technology, India, Vide funding number CIT/CCM/2022/RP-006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Mohanasubha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanasubha, R., Senthilvelan, M. A study on Darboux polynomials and their significance in determining other integrability quantifiers: A case study in third-order nonlinear ordinary differential equations. Pramana - J Phys 97, 28 (2023). https://doi.org/10.1007/s12043-022-02507-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02507-8

Keywords

PACS Nos

Navigation