Skip to main content
Log in

Charged anisotropic model with embedding and a linear equation of state

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Exact solutions to the Einstein field equations for charged relativistic anisotropic stars are generated. The Karmarkar condition is used with the Einstein–Maxwell field equations and a linear equation of state to investigate various physical properties and behaviour of the compact star. The nonlinear differential equations and the field equations are transformed by adopting the Bannerji and Durgapal transformation. The embedding approach provides a relationship between gravitational potentials that help to solve and integrate the field equations. This enables one to specify one of the gravitational potentials, measure of anisotropy or electric field on a physical basis. In particular, the model is generated using embedding with a linear equation of state. The detailed physical analysis of the results show that the gravitational potentials and matter variables are well behaved. The model satisfies all the necessary physical conditions, such as stability, equilibrium, energy conditions and the mass–radius relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. K Schwarzschild, Sitzer. Preuss. Akad. Wiss. Berlin 424, 189 (1916)

    Google Scholar 

  2. M C Will, Living Rev. Relativity 9, 3 (2006)

    Article  ADS  Google Scholar 

  3. T Clifton, P D Ferreira, A Padillaband and C Skordis, Phys. Rep. 315, 1 (2012)

    Article  ADS  Google Scholar 

  4. A K Mathias, S D Maharaj, J M Sunzu and J M Mkenyeleye, Pramana – J. Phys. 95, 178 (2021)

    Google Scholar 

  5. S K Maurya, Y K Gupta, B Dayanandan and S Ray, Eur. Phys. J. C 76, 266 (2016)

    Article  ADS  Google Scholar 

  6. A T Abdalla, J M Sunzu and J M Mkenyeleye, Pramana – J. Phys. 95, 86 (2021)

    Google Scholar 

  7. R E Bezerra de Mello, Phys. Rev. D 73, 105015 (2006)

    Article  ADS  Google Scholar 

  8. P Bhar, K N Singh and N Pant, Indian J. Phys. 91, 701 (2017)

    Article  ADS  Google Scholar 

  9. A S Eddington, The mathematical theory of relativity (Cambridge University Press, Cambridge, 1923)

    MATH  Google Scholar 

  10. E Poisson, A relativist’s toolkit: The mathematics of black-hole mechanics (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  11. N Straumann, General relativity with applications to astrophysics (Springer, New York, 2004)

  12. G Nordström, Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings 20, 1238 (1918)

    ADS  Google Scholar 

  13. A Karch and A Raz, JHEP 4, 182 (2021)

    Article  ADS  Google Scholar 

  14. A S Lighuda, J M Sunzu, S D Maharaj and W Mureithi, Astrophys. Space Sci. 366, 76 (2021)

    Article  ADS  Google Scholar 

  15. B Turimov, B Ahmedov and Z Stuchlik, Phys. Dark Universe 33, 100868 (2021)

    Article  Google Scholar 

  16. P S Wesson, Int. J. Mod. Phys. D 24(1), 1530001 (2015)

    Article  ADS  Google Scholar 

  17. S K Maurya and S D Maharaj, Eur. Phys. J. C 77, 328 (2017)

    Article  ADS  Google Scholar 

  18. K R Karmarkar, Proc. Indian Acad. Sci. A 27, 56 (1948)

    Article  Google Scholar 

  19. P Bhar, S K Maurya, Y K Gupta and T Manna, Eur. Phys. J. A 52, 312 (2016)

    Article  ADS  Google Scholar 

  20. S Gedela, R K Bisht and N Pant, Eur. Phys. J. A 54, 207 (2018)

    Article  ADS  Google Scholar 

  21. S K Maurya and S D Maharaj, Eur. Phys. J. A 54, 68 (2018)

    Article  ADS  Google Scholar 

  22. K N Singh, P Bhar and N Pant, Astrophys. Space Sci. 361, 339 (2016)

    Article  ADS  Google Scholar 

  23. K N Singh, H M Murad and N Pant, Eur. Phys. J. A 53, 21 (2017)

    Article  ADS  Google Scholar 

  24. J F Schwartzentruber, G Solastiouk and H Renon, Fluid Phase Equilib. 38, 217 (1987)

    Article  Google Scholar 

  25. V M Shah, P R Bienkowski and H D Cochran, AIChE J. 40, 152 (1994)

    Article  Google Scholar 

  26. H Hernandez, D Suarez-Urango and L A Nunez, Eur. Phys. J. C 81, 241 (2021)

    Article  ADS  Google Scholar 

  27. P Rej and P Bhar, Astrophys. Space Sci. 366, 35 (2021)

    Article  ADS  Google Scholar 

  28. M C Durgapal and R Bannerji, Phys. Rev. D 27, 328 (1983)

    Article  ADS  Google Scholar 

  29. L P Eisenhart, Riemannian geometry 6th Edn (Princeton University Press, Princeton, 1966)

    MATH  Google Scholar 

  30. S N Pandey and S P Sharma, Gen. Relativ. Grav. 14, 113 (1982)

    Article  ADS  Google Scholar 

  31. K N Singh, N Pant and M Govender, Eur. Phys. J. C 77, 100 (2017)

    Article  ADS  Google Scholar 

  32. A Beesham, S V Chervon, S D Maharaj and A S Kubasov, Quant. Matter 2, 388 (2013)

    Article  Google Scholar 

  33. S Mukherjee, B C Paul, N K Dadhich, S D Maharaj and A Beesham, Class. Quantum Grav. 23, 6917 (2006)

    ADS  Google Scholar 

  34. A Banerjee, M K Jasim and A Pradhan, Mod. Phys. Lett. A 35, 2050071 (2020)

    Article  ADS  Google Scholar 

  35. S Thirukkanesh and S D Maharaj, Class. Quantum Grav. 25(23), 235001 (2008)

    Article  ADS  Google Scholar 

  36. S D Maharaj and P Mafa Takisa, Gen. Relativ. Gravit. 44, 1419 (2012)

    Article  ADS  Google Scholar 

  37. J W Jape, S D Maharaj, J M Sunzu and J M Mkenyeleye, Eur. Phys. J. C 81, 1057 (2021)

    Article  ADS  Google Scholar 

  38. A M Manjonjo, S D Maharaj and S Moopanar, J. Phys. Commun. 3, 025003 (2019)

    Article  Google Scholar 

  39. S D Maharaj, D K Matondo and P Mafa Takisa, Int. J. Mod. Phys. D 26, 1750014 (2017)

    Article  ADS  Google Scholar 

  40. S D Maharaj and K Komathiraj, Class. Quantum Grav. 24, 4513 (2007)

    Article  Google Scholar 

  41. S Hansraj, Eur. Phys. J. C 77, 557 (2017)

    Article  ADS  Google Scholar 

  42. S D Maharaj, B Chilambwe and S Hansraj, Phys. Rev. D 91, 084049 (2015)

    Article  ADS  Google Scholar 

  43. B Chilambwe, S Hansraj and S D Maharaj, Int. J. Mod. Phys. D 24(7), 1550051 (2015)

  44. P C Vaidya and R Tikekar, J. Astrophys. Astron. 3, 325 (1982)

    Article  ADS  Google Scholar 

  45. R Finch and J E F Skea, Class. Quantum Grav. 6, 6467 (1989)

    Article  Google Scholar 

  46. S Hansraj and S D Maharaj, Int. J. Mod. Phys. 15, 1311 (2006)

    Article  ADS  Google Scholar 

  47. A M Manjonjo, S D Maharaj and S Moopanar, Class. Quantum Grav. 35, 045015 (2018)

    Article  ADS  Google Scholar 

  48. R Sharma, N Dadhich, S Das and S D Maharaj, Eur. Phys. J. C 81, 79 (2021)

  49. A K Mathias, S D Maharaj, J M Sunzu and J M Mkenyeleye, Res. Astron. Astrophys. 22, 045007 (2022)

    Article  ADS  Google Scholar 

  50. M H Murad, Eur. Phys. J. C 78, 285 (2018)

    Article  ADS  Google Scholar 

  51. D Shee, F Rahaman, B K Guha and S Ray, Astrophys. Space Sci. 361, 167 (2016)

    Article  ADS  Google Scholar 

  52. A S Lighuda, J M Sunzu, S D Maharaj and W Mureithi, Res. Astron. Astrophys. 21, 310 (2021)

    Article  ADS  Google Scholar 

  53. J Mahamudu, J M Mkenyeleye and J M Sunzu, Pramana – J. Phys. 96, 88 (2022)

    Google Scholar 

  54. J M Sunzu and A V Mathias, Indian J. Phys. 96, 62 (2022)

    Article  Google Scholar 

  55. S K Maurya and S D Maharaj, Eur. Phys. J. C 77, 328 (2017)

    Article  ADS  Google Scholar 

  56. P Bhar, K N Singh and N Pant, Indian J. Phys. 91, 701 (2017)

    Article  ADS  Google Scholar 

  57. S K Maurya and S D Maharaj, Eur. Phys. J. A 54, 68 (2018)

    Article  ADS  Google Scholar 

  58. S K Maurya and M Govender, Eur. Phys. J. C 77, 347 (2017)

    Article  ADS  Google Scholar 

  59. R L Bowers and E P T Liang, Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  60. J M Sunzu, A K Mathias and S D Maharaj, J. Astrophys. Astron. 40, 8 (2019)

    Article  ADS  Google Scholar 

  61. S K Maurya, Y K Gupta, B Dayanandan and S Ray, Eur. Phys. J. C 76, 266 (2016)

    Article  ADS  Google Scholar 

  62. K N Singh and N Pant, Eur. Phys. J. C 76, 524 (2016)

    Article  ADS  Google Scholar 

  63. D M Pandya and V O Thomas, Can. J. Phys. 97, 3 (2019)

    Article  Google Scholar 

  64. P Bhar, S K Maurya, Y K Gupta and T Manna, Eur. Phys. J. A 52, 312 (2016)

    Article  ADS  Google Scholar 

  65. K D Matondo and S D Maharaj, Entropy 23, 1406 (2021)

    Article  ADS  Google Scholar 

  66. P Bhar and M Govender, Int. J. Mod. Phys. D 26, 1750053 (2017)

    Article  ADS  Google Scholar 

  67. S K Maurya, S D Maharaj and D Debabrata, Eur. Phys. J. C 79, 170 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support of the University of Dodoma in Tanzania to complete this study. AKM is grateful to the Government of Tanzania through the Ministry of Education, Science and Technology for the sponsorship. SDM acknowledges the South African Research Chair Initiative of the Department of Science and Technology and the National Research Foundation support to facilitate this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jefta M Sunzu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathias, A.K., Sunzu, J.M., Maharaj, S.D. et al. Charged anisotropic model with embedding and a linear equation of state. Pramana - J Phys 97, 29 (2023). https://doi.org/10.1007/s12043-022-02503-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02503-y

Keywords

PACS

Navigation