Skip to main content
Log in

Chaotic and regular behaviours of classical and fractional Gross–Pitaevskii equations including two-body, three-body and higher-order interactions

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This study investigates the chaotic and regular behaviours of classical and fractional Gross–Pitaevskii equations (GPE) for interacting boson systems under combined harmonic and optical lattice potentials by Poincaré section of phase space, Lyapunov exponents, power spectrum and bifurcation analysis techniques. Also, the effects of system parameters on the system behaviour are discussed. After certain values of the harmonic potential (for \(\beta = 0.00{1}\) and above), it is seen that the classical GP equation with two-body interaction shows shock wave-like dynamics. In addition, it is found that the harmonic potential is dominant where only binary interaction and three types of interactions exist for \(\beta = 0.00{1}\) and above. While the boson system exhibits a regular\(/\)quasiperiodic behaviour for a small order of fractional derivative operator, it displays a chaotic structure as it approaches the value of 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. S N Bose, Z. Phys. 26, 168 (1924)

    Article  ADS  Google Scholar 

  2. A Einstein, Sitzber. Kgl. Preuss. Akad. Wiss. 261, 3 (1925)

    Google Scholar 

  3. M H Anderson, J R Ensher, M R Matthews, C E Wiemann and E A Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  4. K B Davis, M O Mewes, M R Adrews, N J Van Druten, D S Durfee, D M Kurn and W Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  5. https://www.nobelprize.org/prizes/physics/1997/summary/

  6. N K Efremidis and D N Christodolides, Phys. Rev. A 67, 063608 (2003)

    Article  ADS  Google Scholar 

  7. O Morsch and M Oberthaler, Rev. Mod. Phys. 78, 179 (2006)

    Article  ADS  Google Scholar 

  8. W Zhi-Xiaa, N W Zheng-Guo, C Fu-Zhong, L Xue-Shen and C Lei, Chin. Phys. B 19(11), 113205 (2010)

    Article  ADS  Google Scholar 

  9. L Fallani, C Fort, J E Lye and M Inguscio, Opt. Express 13(11), 4303 (2005)

    Article  ADS  Google Scholar 

  10. P Verma, A Bhattacherjee and M Mohan, J. Phys. Conf. 350, 012003 (2012)

    Article  Google Scholar 

  11. S Gautam and D Angom, Eur. Phys. J. D 46(1), 151 (2008)

    Article  ADS  Google Scholar 

  12. A G de Sousa, V S Bagnato and A B F da Silva, Braz. J. Phys. 3, 104 (2008)

    Article  ADS  Google Scholar 

  13. E P Gross, II Nuovo Cimento 20, 454 (1961)

    Article  ADS  Google Scholar 

  14. L P Pitaevskii and S Stringari, Bose Einstein condensation, 1st Edn (Clarendon Press, Oxford, 2003) p. 12

    MATH  Google Scholar 

  15. S Sabari, R Raja, K Porsezian and P Muruganandam, J. Phys. B: At. Mol. Opt. Phys. 43, 125302 (2010)

    Article  ADS  Google Scholar 

  16. E Wamba, S Sabari, K Porsezian, A Mohamadou and T C Kofan, Phys. Rev. E 89, 052917 (2014)

    Article  ADS  Google Scholar 

  17. S Subramaniyan, O T Lekeufack, R Radha and T C Kofane, J. Opt. Soc. Am. B 37(11), A54 (2020)

    Article  ADS  Google Scholar 

  18. https://arxiv.org/pdf/1610.09805.pdf

  19. A Gammal, T Frederico, L Tomio and Ph Chomaz, J. Phys. B: At. Mol. Opt. Phys. 33, 4053 (2000)

    Article  ADS  Google Scholar 

  20. P R Johnson, D Blume, X Y Yin, W F Flynn and E Tiesinga, New J. Phys. 14, 53037 (2012)

    Article  Google Scholar 

  21. https://arxiv.org/pdf/0903.2261.pdf

  22. N Uzar and S Ballıkaya, Physica A 392, 1733 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. E Tosyali, Bose-Einstein yoğuşmasında düzgün doğrusal olmayan davranışların incelenmesi, Ph.D. thesis (Istanbul University, 2015)

  24. K Furuya, M C Nemes and G O Pellegrino, Quant. Phys. Rev. Lett. 80, 5524 (1998)

    Article  ADS  Google Scholar 

  25. P H Song and D L Shepelyansky, Phys. Rev. Lett. 86, 2162 (2001)

    Article  ADS  Google Scholar 

  26. G Chong and W Hai, J. Phys. B: At. Mol. Opt. Phys40, 211 (2007)

    Article  ADS  Google Scholar 

  27. U Al Khawaja, Phys. Rev. E 75, 066607 (2007)

    Article  ADS  Google Scholar 

  28. W Hai, Q Zhu and S Rong, Phys. Rev. A 79, 023603 (2009)

    Article  ADS  Google Scholar 

  29. A S Hassan, Phys. Lett. A 374, 2106 (2010)

    Article  ADS  Google Scholar 

  30. P Verma, A B Bhattacherjee and M Mohan, Cent. Eur. J. Phys. 10(2), 335 (2012)

    Google Scholar 

  31. T Ramakrishnan and S Subramaniyan, Phys. Lett. A 383(17), 2033 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. I Podlubny, Fractional differential equations, 1st Edn (Academic Press, New York, 1999) Vol. 198

    MATH  Google Scholar 

  33. K B Oldham and J Spainer, The fractional calculus, 1st Edn (Academic Press, San Diego, 1974) Vol. 4

    Google Scholar 

  34. M Caputo, Geophys. J. R. Astron. Soc. 13, 529 (1967)

    Article  ADS  Google Scholar 

  35. S Fadugba, O H Edogbanya and S C Zelibe, Int. J. Appl. Math. Model. 1(2), 8 (2013)

    Google Scholar 

  36. D Yilmaz and N F Güler, Gazi Üniv. Müh. Mim. Fak. Der. 21(4), 759 (2006)

    Google Scholar 

  37. E Tosyalı, F Aydoğmuş and A Yılmaz, Int. J. Mod. Phys. B 32(23), 1850254 (2018)

    Article  ADS  Google Scholar 

  38. M Sandri, The Math. J. 6(3), 78 (1996)

    Google Scholar 

  39. https://pdfs.semanticscholar.org/f794/3fe90280ab69c31c7e49611e806049464024.pdf

  40. http://pcwww.liv.ac.uk/~bnvasiev/Past%20students/Caitlin_399.pdf

Download references

Acknowledgements

The author would like to thank the Research Fund of Istanbul University in Turkey, with project number 12941, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NESLIHAN ÜZAR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ÜZAR, N. Chaotic and regular behaviours of classical and fractional Gross–Pitaevskii equations including two-body, three-body and higher-order interactions. Pramana - J Phys 97, 36 (2023). https://doi.org/10.1007/s12043-022-02497-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02497-7

Keywords

PACS Nos

Navigation