Skip to main content

Advertisement

Log in

Investigation of the thermoelectric properties of the perfect and defective (3,7) boron nitride nanosheets by DFT

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Currently, one of the major challenges facing today's societies is the high-energy consumption of fuel and reduced fuel reserves. Employing wasted heat to produce electricity has attracted the attention of many researchers. This paper investigates the thermoelectric properties of defective boron nitride (BN) nanosheet. For this purpose, the influence of the position of the single-vacancy defect on the thermoelectric characteristics is evaluated. The investigations are performed at three arbitrary temperatures, 200, 300 and 600 K. Results show that the figure-of-merit (ZT) value of the BN nanosheet without defect is much better than that of the single-vacancy defect in the BN nanosheet. Because the defect occurs naturally during synthesis, the study shows that the ZT value at all three temperatures with boron atoms removed from the left and the right positions and also the nitrogen atoms removed from the right BN nanosheets is larger than other defective structures. The resonant tunnelling of electrons causes fluctuations in electronic conductance and also significantly increases the Seebeck coefficient. Studies show that the Seebeck coefficient in the structure without defects is larger than in other structures. Due to the increasing need for energy in the world, the conversion of thermal energy into electricity can be a good solution to prevent the depletion of natural reserves. Therefore, it seems that the results and properties obtained from BN nanostructures can help in designing the nanoelectronic and cooling systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K Ebrahimi, G F Jones and A S Fleischer, Renew. Sustain. Energy Rev. 31, 622 (2014)

    Article  Google Scholar 

  2. K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva and A A Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  3. C Zhi, Y Bando, C Tang, H Kuwahara and D Golberg, Adv. Mater. 21, 2889 (2009)

    Article  Google Scholar 

  4. A Nag, K Raidongia, K P Hembram, R Datta, U V Waghmare and C N R Rao, ACS Nano. 4, 1539 (2010)

    Article  Google Scholar 

  5. L Li, Y Yu, G J Ye, Q Ge, X Ou, H Wu, D Feng, X Chen and Y Zhang, Nat. Nanotechnol. 9, 372 (2014)

    Article  ADS  Google Scholar 

  6. G Seol and J Guo, Appl. Phys. Lett. 98, 143107 (2011)

    Article  ADS  Google Scholar 

  7. Y Gao, Y Zhang, P Chen, Y Li, M Liu, T Gao, D Ma, Y Chen, Z Cheng, X Qiu, W Duan and Z Liu, Nano Lett. 13, 3439 (2013)

    Article  ADS  Google Scholar 

  8. V T Tran, M J Saint and P Dollfus, Appl. Phys. Lett. 105, 073114 (2014)

    Article  ADS  Google Scholar 

  9. G Fiori, F Bonaccorso, G Iannaccone, T Palacios, D Neumaier, A Seabaugh, S K Banerjee and L Colombo, Nat. Nanotechnol. 9, 768 (2014)

    Article  ADS  Google Scholar 

  10. L Ci, L Song, C Jin, D Jariwala, D Wu, Y Li, A Srivastava, Z F Wang, K Storr, L Balicas, F Liu and P M Ajayan, Nat. Mater. 9, 430 (2010)

    Article  ADS  Google Scholar 

  11. P Sutter, R Cortes, J Lahiri and E Sutterm, Nano Lett. 12, 4869 (2012)

    Article  ADS  Google Scholar 

  12. Z Liu, L Ma, G Shi, W Zhou, Y Gong, S Lei, X Yang, J Zhang, J Yu, K P Hackenberg, A Babakhani, J C Idrobo, R Vajtai, J Lou and P M Ajayan, Nat. Nanotechnol. 8, 119 (2013)

    Article  ADS  Google Scholar 

  13. A I Khan, I A Navid, M Noshin and S Subrina, AIP Adv. 7, 105110 (2017)

    Article  ADS  Google Scholar 

  14. Y Miyamoto, A Rubio, S Berber, M Yoon and D Tománek, Phys. Rev. B 69, 121413 (2004)

    Article  ADS  Google Scholar 

  15. S Azevedo, J R Kaschny, C M C de Castilho and F de Brito Mota, Eur. Phys. J. B 67, 507 (2009)

    Article  ADS  Google Scholar 

  16. K Zberecki, R Swirkowicz and J Barna, Phys. Chem. Chem. Phys. 17, 22448 (2015)

    Article  Google Scholar 

  17. K Yang, Y Chen, R D’Agosta, Y Xie, J Zhong and A Rubio, Phys. Rev. B: Condens. Matter Mater Phys. 86, 045425 ( 2012)

    Article  ADS  Google Scholar 

  18. V Sharma, H L Kagdada, P K Jha, P Śpiewak and K J Kurzydłowski, Renew. Sustain. Energy Rev.s 120, 109622 (2020)

    Article  Google Scholar 

  19. X Jiang, C Ban, L Li, C Wang, W Chen and X Liu, AIP Adv. 11, 055120 (2021)

    Article  ADS  Google Scholar 

  20. J Y Bi, L H Han, Q Wang, L Y Wu, R Quhe and P F Lu, Chin. Phys. B 27, 2 ( 2018)

    Google Scholar 

  21. H Sevinçli and C Sevik, Appl. Phys. Lett. 105, 223108 (2014)

    Article  ADS  Google Scholar 

  22. Y Xiao, X H Yan, J X Cao, J W Ding, Y L Mao and J Xiang, Phys. Rev. B: Condens. Matter Phys. 69, 205415 (2004)

    Article  ADS  Google Scholar 

  23. C Visan, J. Electron. Mater. 43, 3470 (2014)

    Article  ADS  Google Scholar 

  24. T Heine, G Seifert, P W Fowler and F Zerbetto, J. Phys. Chem. A 103, 8738 (1999)

    Article  Google Scholar 

  25. D Porezag, Th Frauenheim, Th Köhler, G Seifert and R Kaschner, Phys, Rev. B 51, 12947 (1995)

    Article  ADS  Google Scholar 

  26. G Seifert, D Porezag and T Frauenheim, Chem. Phys. Lett. 268, 352 (1997)

    Article  ADS  Google Scholar 

  27. A D Carlo, Physica B 314, 211 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  28. J Deb, R Mondal, U Sarkar and H Sadeghi, ACS Omega 6, 20149 (2021)

    Article  Google Scholar 

  29. G Ding, G Gao and K Yao, Sci. Rep. 5, 9567 (2015)

    Article  ADS  Google Scholar 

  30. J Wang, L P Zhang and Y Li, Appl. Mech. Mater. 492, 326 (2014)

    Article  Google Scholar 

  31. M H Mohammed, Chin. J. Phys. 56, 1622 (2018)

    Article  Google Scholar 

  32. P Zhao et al, Solid State Commun. 152, 2040 (2012)

    Article  ADS  Google Scholar 

  33. P Chaudhuri et al, Appl. Surf. Sci. 536, 147686 (2020)

    Article  Google Scholar 

  34. J X Zhao et al, J. Chin. Chem. Soc. 52, 395 (2005)

    Article  Google Scholar 

  35. N Dehghan, M Yaghobi and M R Niazian, PramanaJ. Phys. 96, 1 (2022)

    Article  Google Scholar 

  36. M H Liu and X F Yang, J. Appl. Phys. 108, 023710 (2010)

    Article  ADS  Google Scholar 

  37. W G van der Wiel, S De Franceschi, J M Elzerman, T Fujisawa, S Tarucha and L P Kouwenhoven, Rev. Mod. Phys. 75, 1 (2002)

    Article  ADS  Google Scholar 

  38. B Ludoph and J M van Ruitenbeek, Phys. Rev. B 59, 12290 (1999)

    Article  ADS  Google Scholar 

  39. P Reddy, S Y Jang, R A Segalman and A Majumdar, Science, 315, 1568 (2007)

    Article  ADS  Google Scholar 

  40. J Taylor, H Guo and J Wang, Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  41. E Haque, C Cazorla and M Anwar Hossain, Phys. Chem. Chem. Phys. 22, 878 (2019)

    Article  Google Scholar 

  42. M Yaghobi and F A Larijani, Indian J. Phys. 89, 257 (2015)

    Article  ADS  Google Scholar 

  43. G J Snyder and A H Snyder, Energy Environ. Sci. 10, 2280 (2017)

    Article  Google Scholar 

  44. A Herrera-Carbajal, V Rodríguez-Lugo, J Hernández-Ávila and A Sánchez-Castillo, Phys. Chem. Chem. Phys. 23, 13075 (2021)

    Article  Google Scholar 

  45. M R Niazian, L F Matin, M Yaghobi and A A Masoudi, Curr. Nanosci. 16, 936 (2020)

    Article  ADS  Google Scholar 

  46. J Androulakis, Y Lee, I Todorov, D Y Chung and M Kanatzidis, Phys. Rev. B 83, 195209 (2011)

    Article  ADS  Google Scholar 

  47. M V Shuba et al, J. Appl. Phys. 119, 104303 (2016)

    Article  ADS  Google Scholar 

  48. T Kolodiazhnyi, A Petric and G P Johari, Appl. Phys. 89, 3939 (2001)

    Article  Google Scholar 

  49. K H Michel and B Verberck, Phys. Rev. B 80, 224301 (2009)

    Article  ADS  Google Scholar 

  50. R Chegel, Physica B 531, 206 (2018)

    Article  ADS  Google Scholar 

  51. T Ouyang, Y Chen, Y Xie, K Yang, Z Bao and J Zhong, Nanotechnol. 21, 245701 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M R Niazian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niazian, M.R. Investigation of the thermoelectric properties of the perfect and defective (3,7) boron nitride nanosheets by DFT. Pramana - J Phys 97, 15 (2023). https://doi.org/10.1007/s12043-022-02487-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02487-9

Keywords

PACS Nos

Navigation