Skip to main content
Log in

Thermal properties and quantum information theory with the shifted Morse potential

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

By employing the Nikiforov–Uvarov functional analysis (NUFA) method, we solved the radial Schrödinger equation with the shifted Morse potential model. The analytical expressions of the energy eigenvalues, eigenfunctions and numerical results were determined for selected values of the potential parameters. Variations of different thermodynamic functions with temperature were discussed extensively. Different quantum information-theoretic measures, including Shannon entropy, Fisher information and Fisher–Shannon product of the shifted Morse potential, were investigated numerically and graphically in position and momentum spaces for the ground and the first excited states. The quantum information theories considered satisfied their corresponding inequalities, including Bialynicki–Birula–Mycielski, Stam–Cramer–Rao inequalities and the Fisher–Shannon product relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. S H Dong and J Garcia-Ravelo, Phys. Scr. 75, 307 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. X Zau, L Z Yi and C S Jia, Phys. Lett. A 346, 54 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  3. Y F Diao, L Z Yi and C S Jia, Phys. Lett. A 332, 57 (2004)

    Article  Google Scholar 

  4. C Y Chen, Phys. Lett. A 339 283 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. X Q Zhao, C S Jia and Q B Yang, Phys. Lett. A 337,189 (2005)

    Article  ADS  Google Scholar 

  6. T T Ibrahim, K J Oyewumi and S M Wyngaardt, Eur. Phys. J. Plus 127, 100 (2012)

    Article  Google Scholar 

  7. T Chen, S R Lin and C S Jia, Eur. Phys. J. Plus 128, 69 (2013)

    Article  Google Scholar 

  8. A N Ikot, E J Ibanga and H Hassanabadi, Int. J. Quant. Chem. 116, 81 (2016)

    Article  Google Scholar 

  9. W C Qiang, Chin. Phys. 13, 571 (2004)

    Article  Google Scholar 

  10. A D Aihaidarttrri, J. Phys. A 34, 9827 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. C Berkdemir, A Berkdemir and R Sever, J. Phys. A: Math. Gen. 39, 13455 (2006)

    Article  ADS  Google Scholar 

  12. S M Ikhdair and R Sever, J. Math. Chem. 45, 1137 (2009)

    Article  MathSciNet  Google Scholar 

  13. O Bayrak, I Bozbosun and H Ciftci, Int. J. Quantum Chem. 107, 540 (2007)

    Article  ADS  Google Scholar 

  14. S M Ikhdair, B J Falaye and M Hamzavi, Chin. Phys. Lett. 30, 020305 (2013)

    Article  Google Scholar 

  15. A N Ikot, G J Rampho, P O Amadi, U S Okorie, M J Sithole and M I Lekala, Int. J. Quantum Chem. 120, e26410 (2020)

    Article  Google Scholar 

  16. A N Ikot, U S Okorie, R Sever and G J Rampho, Eur. Phys. J. Plus 134, 386 (2019)

    Article  Google Scholar 

  17. C S Jia, L H Zhang and C W Wang, Chem. Phys. Lett. 667, 211 (2017)

    Article  ADS  Google Scholar 

  18. A N Ikot, G J Rampho, P O Amadi, M J Sithole, U S Okorie and M I Lekala, Eur. Phys. J. Plus 135, 503 (2020)

    Article  Google Scholar 

  19. M I Neves, E M C Abreu, J B de Oliveira and M Kesseles, Int. J. Geo. Meth. Mod. Phys. 17, 2050193 (2020)

    Article  Google Scholar 

  20. A N Ikot, U S Okorie, G J Rampho and P O Amadi, Int. J. Therm. Phys. 42,10 (2021)

    Article  ADS  Google Scholar 

  21. M Zarezadeh and M K Tavassoly, Chin. Phys. C 37, 4 (2013)

    Article  Google Scholar 

  22. M Daoud and D Popov, Int. J. Mod. Phys. B 18, 325 (2004)

    Article  ADS  Google Scholar 

  23. A F Nikiforov and V B Uvarov, Special functions of mathematical physics (Birkhauser, Basel, 1988)

    Book  MATH  Google Scholar 

  24. M E Udoh, U S Okorie, M I Ngwueke, E E Ituen and A N Ikot, J. Mol. Mod. 25, 170 (2019)

    Article  Google Scholar 

  25. M Abramowitz and I A Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables (Dover, New York, 1972)

    MATH  Google Scholar 

  26. C Tezcan and R Sever, Int. J. Theor. Phys. 48, 337 (2008)

    Article  Google Scholar 

  27. F Scardigli, Phys. Lett. B 452, 39 (1999)

    Article  ADS  Google Scholar 

  28. M Servatkhah, R Khordad and A Ghanbari, Int. J. Thermophys. 41, 37 (2020)

    Article  ADS  Google Scholar 

  29. R Horchani and H Jelassi, Chem. Phys. 532, 110692 (2020)

    Article  Google Scholar 

  30. R Khordad and A Ghanbari, J. Low Temp. Phys. 199, 1198 (2020)

    Article  ADS  Google Scholar 

  31. A N Ikot, E O Chukwuocha, M C Onyeaju, C A Onate, B I Ita and M E Udoh, Pramana–J. Phys. 90, 22 (2018)

    Article  ADS  Google Scholar 

  32. G T Osobonye, M Adekanmbi, A N Ikot, U S Okorie and G J Rampho, Pramana–J. Phys. 95, 98 (2021)

    Article  ADS  Google Scholar 

  33. A S Pooja, R Gupta and A Kumar, Int. J. Quantum Chem. 117, e25368 (2017)

    Article  Google Scholar 

  34. I Bialynicki-Birula and J Mycielski, Commun. Math. Phys. 44, 129 (1975)

    Article  ADS  Google Scholar 

  35. M Alipour and A Mohajeri, Mol. Phys. 110, 403 (2012)

    Article  ADS  Google Scholar 

  36. E Romera, Mol. Phys. 35, 5181 (2002)

    Google Scholar 

  37. A Abdel-Hady and I Nasser, Appl. Math. Info. Sci. 12, 717 (2018)

    Article  Google Scholar 

  38. Y J Shi, G H Sun, J Jing and S H Dong, Lasser Phys. 27, 125201 (2017)

    Article  ADS  Google Scholar 

  39. A J Torres-Arenas, Q Dong, G H Sun and S H Dong, Phys. Lett. A 382, 1752 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  40. Q Dong, A J Torres-Arenas, G H Sun and S H Dong, Laser Phys. Lett. 15, 115202 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U S Okorie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udoh, M.E., Amadi, P.O., Okorie, U.S. et al. Thermal properties and quantum information theory with the shifted Morse potential. Pramana - J Phys 96, 222 (2022). https://doi.org/10.1007/s12043-022-02463-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02463-3

Keywords

PACS Nos

Navigation