Skip to main content
Log in

Convective radiative moving fin with temperature-dependent thermal conductivity, internal heat generation and heat transfer coefficient

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper deals with temperature distribution in a moving fin. Practically, we know that thermal conductivity changes with temperature. So in our study, we consider thermal conductivity as temperature-dependent which is constant, linear, quadratic and exponential. The heat transfer coefficient is taken as a power-law type form in the present work. Internal heat generation has been taken as temperature-dependent. For solving the problem, we used numerical methods such as Legendre wavelet collocation method (LWCM), least square method (LSM) and moment method (MM). An exact solution is computed in a particular case. The percentage error is calculated to find out the most suitable method for solving the problem, which is given in the tabular form. The effect of different parameters on temperature distribution is studied in detail. The whole paper is presented in dimensionless form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A D Kraus, A Aziz, J Welty and D P Sekulic, Appl. Mech. Rev. 54(5), B92 (2001)

    Article  Google Scholar 

  2. C A Yunus, Heat transfer, 2nd Edn (McGraw-Hill, 2020)

  3. S Basavarajappa, G Manavendra and S B Prakash, J. Phys. Conf. Ser. 1473(1), 012030 (2020)

  4. T L Bergman, T L Bergman, F P Incropera, D P Dewitt and A S Lavine, Fundamentals of heat and mass transfer, 7th Edn (John Wiley and Sons, 2011)

  5. A S Dogonchi and D D Ganji, Appl. Therm. Eng. 103, 705 (2016)

    Article  Google Scholar 

  6. H C Unal, Int. J. Heat Mass Transf. 30(2), 341 (1987)

    Article  Google Scholar 

  7. A R Shateri and B Salahshour, Int. J. Mech. Sci. 136, 252 (2018)

    Article  Google Scholar 

  8. M Hatami, A Hasanpour and D D Ganji, Energy Convers. Manag. 74, 9 (2013)

    Article  Google Scholar 

  9. M Zerroukat, H Power and C Chen, Int. J. Numer. Methods Eng. 42(7), 1263 (1998)

    Article  Google Scholar 

  10. M G Sobamowo, G A Oguntala, A A Yinusa and A O Adedibu, World Sci. News 137, 166 (2019)

    Google Scholar 

  11. M Torabi and Q bao Zhang, Energy Convers. Manag. 66, 199 (2013)

  12. P K Roy, A Mallick, H Mondal and P Sibanda, Arab. J. Sci. Eng. 43(3), 1485 (2018)

    Article  Google Scholar 

  13. L P Santos, J O M Junior, M D de Campos and E C Romao, Appl. Math. Sci. 7, 6227 (2013)

    MathSciNet  Google Scholar 

  14. S Singh, D Kumar and K N Rai, Int. J. Nonlinear Anal. Appl. 6(1), 105 (2015)

    Google Scholar 

  15. A Aziz, Int. Commun. Heat Mass Transf. 12(4), 479 (1985)

    Article  Google Scholar 

  16. A R Shouman, Nonlinear heat transfer and temperature distribution through fins and electric filaments of arbitrary geometry with temperature-dependent properties and heat generation, George C. Marshall Space Flight Centre Huntsville, Ala (NASA, 1968)

    Google Scholar 

  17. S Mosayebidorcheh, M Hatami, T Mosayebidorcheh and D D Ganji, Energy Convers. Manag. 106, 1286 (2015)

    Article  Google Scholar 

  18. M Lindstedt, K Lampio and R Karvinen, J. Heat Transfer 137(6), 061006 (2015)

    Article  Google Scholar 

  19. L O Jayesimi and G Oguntala, J. Appl. Comput. Mech. 49(2), 274 (2018)

    Google Scholar 

  20. M Torabi, H Yaghoobi and A Aziz, Int. J. Thermophys. 33(5), 924 (2012)

    Article  ADS  Google Scholar 

  21. S Singh, D Kumar and K N Rai, Int. J. Therm. Sci. 125, 166 (2018)

    Article  Google Scholar 

  22. I Girgin and E Z G I Cuneyt, JNSE 11(1), 53 (2015)

    Google Scholar 

  23. C H Chiu and C O K Chen, J. Heat Transfer 125(2), 312 (2003)

    Article  MathSciNet  Google Scholar 

  24. P K Roy, H Mondal and A Mallick, Ain Shams Eng. J. 6(1), 307 (2015)

    Article  Google Scholar 

  25. L Jayesimi and G Oguntala, J. Comput. Appl. Mech. 48(2), 217 (2017)

    Google Scholar 

  26. M Kezzar, I Tabet and M R Eid, Eur. Phys. J. Plus 135(1), 1 (2020)

    Article  Google Scholar 

  27. M Razzaghi and S Yousefi, Int. J. Syst. Sci. 32(4), 495 (2001)

Download references

Acknowledgements

The authors are grateful to the Vice-Chancellor of Eternal University, Baru Sahib, India for providing the necessary facilities. Authors are also grateful to the reviewers for their valuable comments which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surjan Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, P., Singh, S. Convective radiative moving fin with temperature-dependent thermal conductivity, internal heat generation and heat transfer coefficient. Pramana - J Phys 96, 216 (2022). https://doi.org/10.1007/s12043-022-02459-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02459-z

Keywords

PACS Nos

Navigation