Skip to main content
Log in

Temperature field as a codifier of entanglement

  • Research paper
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Vectorial fields such as the electromagnetic field are commonly employed for codifying both qubits and information. It is considered as a three-qubits Heisenberg chain with multiple interaction in the presence of a scalar field, as it is the temperature field. The corresponding pairwise thermal entanglement is calculated. Our results corroborate with the results of Yang and Huang, Quant. Inf. Proc. 16:281 (2017). To first order of approximation in powers of \(\beta =1/T\), it is shown that a temperature field can codify entanglement. A scalar field substrate can be used to distribute quantum entanglement in communication protocols that require this ingredient. Present results can be extrapolated to other physical systems such as Heisenberg spins (two-site) or superconducting qubits, provided the respective quantum correlation (entanglement or discord) expression depends explicitly on the temperature scalar field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J Yang and Y Huang, Quant. Inf. Proc. 16, 281 (2017)

    Article  Google Scholar 

  2. C Cabrillo, J I Cirac, P García-Fernández and P Zoller, Phys. Rev. A 59, 1025 (1999)

    Article  ADS  Google Scholar 

  3. L-M Duan, M D Lukin, J I Cirac and P Zoller, Nature 414, 413 (2001)

    Article  ADS  Google Scholar 

  4. S L Braunstein and H J Kimble, Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  5. H-J Briegel, W Dür, J I Cirac and P Zoller, Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  6. P van Loock et al, Phys. Rev. Lett. 96, 240501 (2006)

    Article  Google Scholar 

  7. J Brody, Quantum entanglement (MIT Press, 2020)

  8. G Alber, T Beth, M Horodecki, P Horodecki, R Hodorecki, M Rotteler, H Weinfurter, R Werner and A Zeilinger, Quantum information: An introduction to basic theoretical concepts and experiments (Beijing World Publishing Corporation, 2004)

  9. M A Nielsen and I L Chuang, Quantum computation and quantum information (Cambridge University Press, 2000)

  10. L Amico, R Fazio, A Osterloh and V Vedral, Rev. Mod. Phys. 80, 51 (2008)

    Article  ADS  Google Scholar 

  11. M C Arnesen, S Bose and V Vedral, Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  12. W W Cheng, C J Shan, Y X Huang, T K Liu and H Li, Physica E 43, 235 (2010)

    Article  ADS  Google Scholar 

  13. C Sun, T Hu, G Wang, C Wu and K Xue, Int. J. Quant. Inf. 7, 879 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to SNI-Conacyt Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Ávila .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ávila , M., López, M.L. Temperature field as a codifier of entanglement. Pramana - J Phys 96, 212 (2022). https://doi.org/10.1007/s12043-022-02457-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02457-1

Keywords

PACS Nos

Navigation