Skip to main content
Log in

Modelling to determine the optical properties of nanosized semiconducting compounds

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the present paper, a theoretical model is used to study the optical properties of nanomaterials. The optical properties of nanosized semiconductors are studied in relation to dimension and size. The model proposed by Guisbiers is extended to study the impact of size and shape on band-gap expansion, dielectric constant, vibrational frequency and electrical susceptibility of nanomaterials. The model is free from any adjustable parameter. We have considered here II–VI and III–V group semiconductors. It is found from model predictions that the energy band gap of the nanosized semiconducting compounds increases as size decreases because of the quantum confinement of electrons and holes as size is reduced to nanolevel. The vibrational frequency, dielectric constant and electrical susceptibility are found to decrease with decrease in the size of the nanosized semiconductors. The results calculated from the present model are found to be in good agreement with the available experimental and simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. A Pierret, C Bougerol, S Murcia-Mascaros, A Cros, H Renevier, B Gayral and B Daudin, Nanotechnology 24, 115704 (2013)

    Article  ADS  Google Scholar 

  2. A S Edelstein and R C Cammarata, Nanomaterials: Synthesis, properties and applications (Institute of Physics, Bristol, 1996)

  3. S Baskoutas and A F Terzis, J. Appl. Phys. 99, 0137081 (2006)

    Article  Google Scholar 

  4. S Baskoutas and A F Terzis, Mater. Sci. Eng. B: Solid State Mater. Adv. Technol. 147(2–3), 280 (2008)

    Article  Google Scholar 

  5. L D Geoffrion and G Guisbiers, J. Phys. Chem. Solids 140, 109320 (2020), https://doi.org/10.1016/j.jpcs.2019.109320

    Article  Google Scholar 

  6. S Baskoutas, A F Terzis and W Schommers, J. Comput. Theor. Nanosci. 3(2), 269 (2006), https://doi.org/10.1166/jctn.2006.3008

    Article  Google Scholar 

  7. U Pachauri, D P Joshi and N Arora, Appl. Phys. A 126(4), 253 (2020), https://doi.org/10.1007/s00339-020-3411-1

    Article  ADS  Google Scholar 

  8. G Guisbiers, Adv. Phys. X 4, 1668299 (2019)

    Google Scholar 

  9. M Goyal and B R K Gupta, PramanaJ. Phys. 90, 80 (2018)

    Article  ADS  Google Scholar 

  10. M Goyal and M Singh, Appl. Phys. A 126, 176 (2020)

    Article  ADS  Google Scholar 

  11. M Singh, M Goyal and K Devlal, J. Taibah Univ. Sci. 12, 470 (2018)

    Article  Google Scholar 

  12. H Li, H J Xiao, T S Zhu, H C Xuan and M Li, J. Phys. Chem. 119, 12002 (2015)

    Google Scholar 

  13. A Biswas, A Corani, A Kathivaran, Y Infahsaeng, A Yartsev and V Sundstrom, Nanotechnology 24, 196601 (2013)

    Article  Google Scholar 

  14. O Madelung, LandoltBornstein, Group III (Springer-Verlag, New York, 1982) Vol. 17

  15. L E Brus, J. Chem. Phys. 79, 5566 (1983)

    Article  ADS  Google Scholar 

  16. H Reiss, J. Chem. Phys. 19, 482 (1951)

    Article  ADS  Google Scholar 

  17. M Isshiki and J Wang, Springer handbook of electronic and photonic materials (Springer, 2017) Chap. 16

  18. G Guisbiers, M Kazan, O V Overschelde, M Wautelet and S Pereira, J. Phys. Chem. C 112, 4097 (2008)

    Article  Google Scholar 

  19. G Guisbiers and L Buchaillot, J. Phys. Chem. C 113, 3566 (2009)

    Article  Google Scholar 

  20. J Shanker and M Kumar, Phys. Status Solidi B 158, 11 (1990)

    Article  ADS  Google Scholar 

  21. R Kumar, G Sharma and M Kumar, J. Thermodyn. 1, 328501 (2013)

    Google Scholar 

  22. C Kittel, Introduction to solid-state physics, 7th Edn (Wiley, New York, 1996)

    MATH  Google Scholar 

  23. M Li and H Li, IEEE Trans. Nanotechnol. 11, 1004 (2012)

    Article  ADS  Google Scholar 

  24. X Y Lang, W T Zheng and Q Jiang, IEEE Trans. Nanotechnol. 7, 5 (2008)

    Article  ADS  Google Scholar 

  25. C Q Sun, X W Sun, B K Tay, S P Lau, H T Huang and S Li, J. Phys. D Appl. Phys. 34, 2359 (2001)

    Article  ADS  Google Scholar 

  26. D R Penn, Phys. Rev. 128, 2093 (1962)

    Article  ADS  Google Scholar 

  27. R Tsu, J. Appl. Phys. 82, 1327 (1997)

    Article  ADS  Google Scholar 

  28. C Q Sun, X W Sun, B K Tay, S P Lau, T P Chen, H T Huang and S Li, Technical Digest. 4th Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.01TH8557), 1 (2001), https://doi.org/10.1109/CLEOPR.2001.967789

  29. V Kumar, A K Shrivastava, A Sinha and V Jha, Indian J. Pure Appl. Phys. 51, 49 (2013)

    Article  Google Scholar 

  30. J Li and L W Wang, Phys. Rev. B 72, 125325 (2005)

    Article  ADS  Google Scholar 

  31. D W Palmer, http://www.semiconductors.co.uk/

  32. J A Garcia-Monge, C D Vazquez-Colon, A Ponce, G Guisbiers and A A Ayon, Microsystem technologies (Springer Nature, 2019), https://doi.org/10.1007/s00542-019-04602-0

  33. R Viswanatha, S Sapra, T S Dasgupta and D D Sarma, Phys. Rev. B 72, 045333 (2005)

    Article  ADS  Google Scholar 

  34. G Guisbiers, M Wautelet and L Buchaillot, Phys. Rev. B 79, 155426 (2009)

    Article  ADS  Google Scholar 

  35. W W Yu and X Peng, Angew. Chem. Int. Ed. 41, 2368 (2002)

    Article  ADS  Google Scholar 

  36. T Rajh, O I Micic and A J Nozic, J. Phys. Chem. 97, 11999 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Goyal.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, M., Chaturvedi, P. Modelling to determine the optical properties of nanosized semiconducting compounds. Pramana - J Phys 96, 206 (2022). https://doi.org/10.1007/s12043-022-02449-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02449-1

Keywords

PACS Nos

Navigation