Skip to main content
Log in

Quasifission and fusion–fission lifetimes for successful and unsuccessful reactions to synthesise superheavy elements

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We have systematically studied quasifission (QF) and fusion–fission (FF) lifetimes for heavy ion fusion reactions which were used in the synthesis of superheavy elements (SHEs) 104 to 118 as well as attempted to synthesise SHEs 119 and 120 using the DNS model. The dependence of QF on energy, angular momentum, entrance channel parameters, deformation parameters and orientation angles are studied. The study reveals that QF lifetimes are larger for the successful reactions than for the unsuccessful reactions. It is also observed that the study of FF lifetimes of both successful and unsuccessful reactions will not give any clue for the reason of failure of experiments to synthesise superheavy elements. It is also observed that the QF process can be controlled by the projectile of lightly deformed or spherical nuclei. The present study finds the importance in selecting the projectile–target combination for the synthesis of SHEs with \(Z=119\) and 120.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W U Schroder and J R Huizenga, Treatise on heavy-ion science 1, 113 (1984)

    Google Scholar 

  2. Y T Oganessian and V K Utyonkov, Nucl. Phys. A 944, 62 (2015)

    Article  ADS  Google Scholar 

  3. J B Roberto, C W Alexander and R A Boll, Nucl. Phys. A 944, 99 (2015)

    Article  ADS  Google Scholar 

  4. R du Rietz, D J Hinde, M Dasgupta, R G Thomas, L R Gasques, M Evers, N Lobanov and A Wakhle, Phys. Rev. Lett. 106(5), 052701 (2011)

    Article  ADS  Google Scholar 

  5. J Toke et al, Nucl. Phys. A 440(2), 327 (1985)

    Article  ADS  Google Scholar 

  6. W Q Shen et al, Phys. Rev. C 36(1), 115 (1987)

    Article  ADS  Google Scholar 

  7. B Heusch et al, Z. Phys. A At. Nucl.288(4), 391 (1978)

    Article  ADS  Google Scholar 

  8. C C Sahm et al, Z. Phys. A At. Nucl. 319(2), 113 (1984)

    Article  ADS  Google Scholar 

  9. H Gäggeler et al, Z. Phys. A At. Nucl. 316(3), 291 (1984)

    Article  ADS  Google Scholar 

  10. D J Hinde et al, Phys. Rev Lett. 74(8), 1295 (1995)

    Article  ADS  Google Scholar 

  11. D J Hinde et al, Phys. Rev. C 53(3), 1290 (1996)

    Article  ADS  Google Scholar 

  12. D J Hinde et al, Phys. Rev. C 97(2), 024616 (2018)

    Article  ADS  Google Scholar 

  13. K Nishio et al, Phys. Rev. C 77(6), 064607 (2008)

    Article  ADS  Google Scholar 

  14. C Simenel et al, Phys. Lett. B 710(5), 607 (2012)

    Article  ADS  Google Scholar 

  15. A Wakhle et al, Phys. Rev. Lett. 113(18), 182502 (2014)

    Article  ADS  Google Scholar 

  16. E M Kozulin et al, Phys. Rev. C 99(1), 014616 (2019)

    Article  ADS  Google Scholar 

  17. K Banerjee et al, Phys. Rev. Lett. 122(23), 232503 (2019)

    Article  ADS  Google Scholar 

  18. M Morjean and et al, Phys. Rev. Lett. 101(7), 072701 (2008)

    Article  ADS  Google Scholar 

  19. F P Heßberger et al, The Eur. Phys. J. A: Hadrons and Nuclei 12(1), 57 (2001)

    Article  ADS  Google Scholar 

  20. G Münzenberg et al, Z. Phys. A At. Nucl. 322(2), 227 (1985)

    Article  ADS  Google Scholar 

  21. C M Folden III et al, Phys. Rev. C 73(1), 014611 (2006)

    Article  ADS  Google Scholar 

  22. S Hofmann et al, Z. Phys. A: At. Nucl.358(4), 377 (1997)

    Article  ADS  Google Scholar 

  23. S Hofmann et al, Z. Phys. A At. Nucl.350(4), 277 (1995)

    ADS  Google Scholar 

  24. S Hofmann et al, The Eur. Phys. J. A: Hadrons and Nuclei 14(2), 147 (2002)

    Article  ADS  Google Scholar 

  25. S Hofmann et al, Z. Phys. A At. Nucl. 354(3), 229 (1196)

    Google Scholar 

  26. K Morita et al, J. Phys. Soc. Japan73(10), 2593 (2004)

    Article  ADS  Google Scholar 

  27. Y T Oganessian et al, Phys. Rev. C 69(5), 054607 (2004)

    Article  ADS  Google Scholar 

  28. Y T Oganessian et al, Phys. Rev. C 69(2), 021601 (2004)

    Article  ADS  Google Scholar 

  29. Y T Oganessian et al, Phys. Rev. Lett. 104(4), 142502 (2010)

    Article  ADS  Google Scholar 

  30. J H Hamilton, S Hofmann and Y T Oganessian, Ann. Rev. Nucl. Part. Sci. 63, 383 (2013)

    Article  ADS  Google Scholar 

  31. P Wen, C Li, L Zhu, C Lin and F Zhang, J. Phys. G: Nucl. Part. Phys. 44(11), 115101 (2017)

    Article  ADS  Google Scholar 

  32. G Fazio et al, J. Phys. Soc. Jpn 77(12), 124201 (2008)

    Article  ADS  Google Scholar 

  33. A Nasirov et al, Nucl. Phys. A759(3), 342 (2005)

    Article  ADS  Google Scholar 

  34. Khanlari, M Varasteh and S Soheyli, Phys. Rev. C 95(2), 024617 (2017)

    Article  ADS  Google Scholar 

  35. S Soheyli, M Khanlari and Varasteh, Phys. Rev. C 94(3), 034615 (2016)

    Article  ADS  Google Scholar 

  36. H C Manjunath, Nucl. Phys. A 945, 42 (2016)

    Article  ADS  Google Scholar 

  37. H C Manjunath and N Sowmya, Nucl. Phys. A 969, 68 (2018)

    Article  ADS  Google Scholar 

  38. H C Manjunatha, K N Sridhar and N Sowmya, Nucl. Phys. A987, 382 (2019)

    Article  ADS  Google Scholar 

  39. H C Manjunatha and K N Sridhar, Nucl. Phys. A 962, 7 (2017)

    Article  ADS  Google Scholar 

  40. N Sowmya and H C Manjunatha, Braz. J. Phys.49(6), 874 (2019)

    Article  ADS  Google Scholar 

  41. H C Manjunatha, K N Sridhar and N Sowmya, Phys. Rev. C 98(2), 024308 (2018)

    Article  ADS  Google Scholar 

  42. K N Sridhar, H C Manjunatha and H B Ramalingam, Phys. Rev. C 98(6), 064605 (2018)

    Article  ADS  Google Scholar 

  43. N Sowmya and H C Manjunatha, Bulg. J. Phys 46, 16 (2019)

    Google Scholar 

  44. N Sowmya and H C Manjunatha, Braz. J. Phys.50(3), 317 (2020)

    Article  ADS  Google Scholar 

  45. N Sowmya and H C Manjunatha, Phys. Part. Nucl. Lett. 17(3), 370 (2020)

    Article  Google Scholar 

  46. H C Manjunatha, Int. J. Mod. Phys. E 25(9), 1650074 (2016)

    Article  ADS  Google Scholar 

  47. H C Manjunatha, N Sowmya, K N Sridhar and L Seenappa, J. Radioanal. Nucl. Chem. 314(2), 991 (2017)

    Article  Google Scholar 

  48. H C Manjunatha and N Sowmya, Int. J. Mod. Phys. E27(5), 1850041 (2018)

    Article  ADS  Google Scholar 

  49. M G Srinivas, H C Manjunatha, K N Sridhar, N Sowmya and S Alfred Cecil Raj, Nucl. Phys. A 995, 121689 (2020)

    Article  Google Scholar 

  50. N Sowmya, H C Manjunatha, N Dhananjaya and A M Nagaraja, J. Radioanal. Nucl. Chem. 323(3), 1347 (2020)

    Article  Google Scholar 

  51. G R Sridhar, H C Manjunatha, N Sowmya, P S Damodara Gupta and H B Ramalingam, The Eur. Phys. J. Plus 135(3), 1 (2020)

  52. H C Manjunatha and K N Sridhar, The Eur. Phys. J. A 53(5), 1 (2017)

    Article  Google Scholar 

  53. H C Manjunatha and K N Sridhar, Nucl. Phys. A 975, 136 (2018)

  54. K N Sridhar, H C Manjunatha and H B Ramalingam, Nucl. Phys. A 983, 195 (2019)

    Article  ADS  Google Scholar 

  55. H C Manjunatha and K N Sridhar, Phys. Part. Nucl. Lett. 16(6), 647 (2019)

  56. K N Sridhar, H C Manjunatha and H B Ramalingam, Braz. J. Phys. 49(2), 232 (2019)

    Article  ADS  Google Scholar 

  57. T Nandi, D K Swami and P S Damodara Gupta, Private communication (2020)

  58. O A Capurro et al, Phys. Rev. C 55(2), 766 (1997)

    Article  ADS  Google Scholar 

  59. P Möller, J R Nix, W D Myers and W J Swiatecki, arXiv preprint arXiv:nucl-th/9308022

  60. H C Manjunatha et al, Phys. Rev. C 102(6), 064605 (2020)

    Article  ADS  Google Scholar 

  61. Y T Oganessian et al, Phys. Rev. C 70(6), 064609 (2004)

    Article  ADS  Google Scholar 

  62. Y T Oganessian, V K Utyonkov and Y V Lobanov, Phys. Rev. C 74(4), 044602 (2006)

    Article  ADS  Google Scholar 

  63. J Khuyagbaatar, A Yakushev and C E Düllmann, GSI Helmholtzzentrum reports (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H C Manjunatha or N Sowmya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P.S.D., Manjunatha, H.C., Sowmya, N. et al. Quasifission and fusion–fission lifetimes for successful and unsuccessful reactions to synthesise superheavy elements. Pramana - J Phys 96, 214 (2022). https://doi.org/10.1007/s12043-022-02444-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02444-6

Keywords

PACS Nos

Navigation