Skip to main content
Log in

Design of a seven-band perfect metamaterial absorber for THz sensing applications

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper presents the design of a perfect metamaterial absorber tera-Hertz (THz) frequencies. The proposed absorber is developed using a square loop enclosing a highly convoluted swastika element. The arms of the swastika elements are coiled to create a square spiral configuration to increase the electrical length of the resonator without increasing the size of the unit cell absorber. The proposed unit cell has multiabsorption characteristics with absorption peaks at 0.82, 1, 1.24, 1.54, 1.85, 2.2 and 2.5 THz. The corresponding absorptivity is greater than 80% in all the reported frequencies. The electrical size of the proposed absorber is 0.42λeff × 0.42λeff, where λeff is the effective wavelength calculated at 0.82 THz. The proposed absorber has structural symmetry and has identical absorption spectra for both TE and TM modes of operation. The angular stability is investigated, and the performance is stable for the angles of incidence up to 70°. The proposed absorber has a small frequency ratio and can be used for THz material sensing. The prototype absorber as a sensor is simulated, and the results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. N I Landy, S Sajuyigbe, J J Mock, D R Smith and W J Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  2. C M Watts, X Liu and W J Padilla, Adv. Mater. 24, 98 (2012)

    Google Scholar 

  3. J Canet-Ferrer, Metamaterials and metasurfaces (Intech Open, 2019)

  4. Z C Xu, R M Gao, C F Ding, Y T Zhang, L Wu, D G Xu and J Q Yao, Mod. Phys. Lett. B 29, 1550056 (2015)

    Article  ADS  Google Scholar 

  5. J H Kim, M P Hokmabadi, S Balci, E Rivera, D Wilbert, P Kung and S M Kim, Appl. Phys. A 122, 362 (2016)

    Article  ADS  Google Scholar 

  6. D H Luu, N Van Dung, P Hai, T T Giang and V D Lam, J. Sci. Adv. Mater. Dev. 1, 6 (2016)

    Google Scholar 

  7. B X Wang and G Z Wang, J. Mater. Sci. Mater. Electron. 28, 8487 (2017)

    Google Scholar 

  8. H Guiming, Mater. Res. Express 5, 045803 (2018)

    Article  ADS  Google Scholar 

  9. Y Qi, C Liu, B Hu, X Deng and X Wang, Results Phys. 15, 102777 (2019)

    Article  Google Scholar 

  10. L S Wang, C L Ding, D Y Xia, X Y Ding and Y Wang, IOP Conf. Ser. Mater. Sci. Eng. 479, 012038 (2019)

    Google Scholar 

  11. Z Yi, J Chen, C Cen, X Chen, Z Zhou, Y Tang and P Wu, Micromachines 10, 194 (2019)

    Article  Google Scholar 

  12. H E Su, J L Li and L Xia, IEEE Access 7, 161255 (2019)

    Article  Google Scholar 

  13. A Vahidi, H Rajabalipanah, A Abdolali and A Cheldavi, Appl. Phys. A 124, 337 (2018)

    Article  ADS  Google Scholar 

  14. J Bai, M Ge, J Li, C Tang, X Sun, H Xing and S Chang, Opt. Commun. 423, 63 (2018)

    Article  ADS  Google Scholar 

  15. Y He, Q Wu and S Yan, Plasmonics 14, 1303 (2019)

    Article  Google Scholar 

  16. C Cen, Z Yi, G Zhang, Y Zhang, C Liang, X Chen and J Hua, Results Phys. 14, 102463 (2019)

    Article  Google Scholar 

  17. W Jia, J Bai, K Roberts, K Q Le and D Zhou, Microw. Opt. Technol. Lett. 62, 2649 (2020)

    Article  Google Scholar 

  18. Z Wu et al, Plasmonics 15, 1863 (2020)

    Article  Google Scholar 

  19. Y Kang, J Wang and H Liu, Plasmonics 17, 449 (2022)

    Article  Google Scholar 

  20. Y W Deng et al, Plasmonics 14, 1057 (2019)

    Article  Google Scholar 

  21. D Hu, H Wang and Q Zhu, IEEE Photon. J. 8(2), 1 (2016)

    Article  Google Scholar 

  22. B Appasani, Plasmonics 16(3), 833 (2021)

    Article  Google Scholar 

  23. A Elakkiya, S Radh and B S Sreeja, Circuit World 47(4), 400 (2020)

    Google Scholar 

  24. Z Liao et al, Sci. Rep. 5, 9590 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalidoss Rajakani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajakani, K. Design of a seven-band perfect metamaterial absorber for THz sensing applications. Pramana - J Phys 96, 205 (2022). https://doi.org/10.1007/s12043-022-02443-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02443-7

Keywords

PACS Nos

Navigation