Skip to main content
Log in

Quantum-to-classical transition in a spin star network

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Quantum versions of neural networks have become extremely important in applications from secure communication to faster artificial intelligence (AI) algorithms. One of the common objectives of quantum-related technologies is to benefit from the fragile quantum resources the longest possible time. This study deals with exploring how the initial state preparation and playing with the network interaction parameters affect the quantumness of the open network in the time domain. A spin-star network model was chosen as a specific quantum network that has applications on quantum communication and quantum artificial intelligence. It has been found that the specific quantum interaction type as well as the specific initialisation schemes significantly affect the lifetime the network remains in quantumness (quantum-to-classical transition).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L M Duan and C Monroe, Rev. Mod. Phys. 82, 1209 (2010)

    Article  ADS  Google Scholar 

  2. A Reiserer and G Rempe, Rev. Mod. Phys. 87, 1379 (2015)

    Article  ADS  Google Scholar 

  3. R Orús, Nat. Rev. Phys. 1, 538 (2019)

    Article  Google Scholar 

  4. Y Du, M H Hsieh, T Liu, D Tao and N Liu, Phys. Rev. Res. 3, 023153 (2021)

    Article  Google Scholar 

  5. R Horodecki, P Horodecki, M Horodecki and K Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  6. L Mazzola, S Maniscalco, J Piilo, K A Suominen and B M Garraway, Phys. Rev. A 79, 042302 (2009)

    Article  ADS  Google Scholar 

  7. U Korkmaz and D Türkpençe, Phys. Lett. A 426, 127887 (2022)

    Article  Google Scholar 

  8. C H Bennett, G Brassard, C Crépeau, R Jozsa, A Peres and W K Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  9. V Scarani, H Bechmann-Pasquinucci, N J Cerf, M Dušek, N Lütkenhaus and M Peev, Rev. Mod. Phys. 81, 1301 (2009)

  10. A Galindo and M A Martín-Delgado, Rev. Mod. Phys. 74, 347 (2002)

    Article  ADS  Google Scholar 

  11. U Korkmaz, D Türkpençe, T Ç Akıncı and S Şeker, IOP Conf. Ser.: Mater. Sci. Eng. 618, 012006 (2019)

  12. U Korkmaz, Balkan J. Comput. Electr. Eng. 7, 178 (2019)

    Google Scholar 

  13. D J Szwer, S C Webster, A M Steane and D M Lucas, At. Mol. Opt. Phys. 44, 025501 (2010)

    Article  ADS  Google Scholar 

  14. S B Xue, R B Wu, W M Zhang, J Zhang, C W Li and T J Tarn, Phys. Rev. A 86, 052304 (2012)

    Article  ADS  Google Scholar 

  15. D Suter and G A Álvarez, Rev. Mod. Phys. 88, 041001 (2016)

    Article  ADS  Google Scholar 

  16. Q Wang, J S Tang, Z He and J B Yuan, Int. J. Theor. Phys. 57, 3682 (2018)

    Article  Google Scholar 

  17. M Gaudin, J. Phys. France 37, 1087 (1976)

    Article  Google Scholar 

  18. N V Prokof’ev and P C E Stamp, Rep. Prog. Phys. 63, 669 (2000)

    Article  ADS  Google Scholar 

  19. J Schliemann, A V Khaetskii and D Loss, Phys. Rev. B 66, 245303 (2002)

    Article  ADS  Google Scholar 

  20. V V Dobrovitski and H A De Raedt, Phys. Rev. E 67, 056702 (2003)

    Article  ADS  Google Scholar 

  21. W A Coish and D Loss, Phys. Rev. B 70, 195340 (2004)

    Article  ADS  Google Scholar 

  22. S I Erlingsson and Y V Nazarov, Phys. Rev. B 70, 205327 (2004)

    Article  ADS  Google Scholar 

  23. K A Al-Hassanieh, V V Dobrovitski, E Dagotto and B N Harmon, Phys. Rev. Lett. 97, 037204 (2006)

    Article  ADS  Google Scholar 

  24. G Chen, D L Bergman and L Balents, Phys. Rev. B 76, 045312 (2007)

    Article  ADS  Google Scholar 

  25. H P Breuer, D Burgarth and F Petruccione, Phys. Rev. B 70, 045323 (2004)

    Article  ADS  Google Scholar 

  26. F M Cucchietti, J P Paz and W H Zurek, Phys. Rev. A 72, 052113 (2005)

    Article  ADS  Google Scholar 

  27. R Hanson, V V Dobrovitski, A E Feiguin, O Gywat and D D Awschalom, Science 320, 352 (2008)

    Article  ADS  Google Scholar 

  28. H Bluhm, S Foletti, I Neder, M Rudner, D Mahalu, V Umansky and A Yacoby, Nat. Phys. 7, 109 (2011)

    Article  Google Scholar 

  29. A Hutton and S Bose, Phys. Rev. A 66, 032320 (2002)

    Article  ADS  Google Scholar 

  30. G De Chiara, R Fazio, C Macchiavello, S Montangero and G M Palma, Phys. Rev. A 70, 062308 (2004)

    Article  ADS  Google Scholar 

  31. H J Kimble, Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  32. M E Tasgin, I Salakhutdinov, D Kendziora, M K Abak, D Turkpence, L Piantanida, L Fruk, M Lazzarino and A Bek, Photon. Nanostruct.: Fundam. Appl. 21, 32 (2016)

    Article  ADS  Google Scholar 

  33. D Türkpençe and R Román-Ancheyta, J. Opt. Soc. Am. B 36, 1252 (2019)

    Article  ADS  Google Scholar 

  34. S Çakmak, D Türkpençe and F Altintas, Eur. Phys. J. Plus 132, 554 (2017)

    Article  Google Scholar 

  35. D Türkpençe and F Altintas, Quantum Inf. Process. 18, 255 (2019)

    Article  ADS  Google Scholar 

  36. M J Hartmann, F G S L Brandão and M B Plenio, Phys. Rev. Lett. 99, 160501 (2007)

    Article  ADS  Google Scholar 

  37. P Strasberg, G Schaller, T Brandes and C Jarzynski, Phys. Rev. E 90, 062107 (2014)

    Article  ADS  Google Scholar 

  38. G A Timco, S Carretta, F Troiani, F Tuna, R J Pritchard, C A Muryn, E J L McInnes, A Ghirri, A Candini, P Santini, G Amoretti, M Affronte and R E P Winpenny, Nat. Nanotechnol. 4, 173 (2009)

    Article  ADS  Google Scholar 

  39. M Neeley, M Ansmann, R C Bialczak, M Hofheinz, E Lucero, A D O’Connell, D Sank, H Wang, J Wenner, A N Cleland, M R Geller and J M Martinis, Science 325, 722 (2009)

    Article  ADS  Google Scholar 

  40. D Marcos, M Wubs, J M Taylor, R Aguado, M D Lukin and A S Sørensen, Phys. Rev. Lett. 105, 210501 (2010)

    Article  ADS  Google Scholar 

  41. X Zhu, S Saito, A Kemp, K Kakuyanagi, S Karimoto, H Nakano, W J Munro, Y Tokura, M S Everitt, K Nemoto, M Kasu, N Mizuochi and K Semba, Nature 478, 221 (2011)

    Article  ADS  Google Scholar 

  42. H P Breuer and F Petruccione, The theory of open quantum systems (Oxford University Press, Oxford, 2007)

    Book  MATH  Google Scholar 

  43. L Bruneau, A Joye and M Merkli, J. Math. Phys. 55, 075204 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  44. D Burgarth and V Giovannetti, Phys. Rev. A 76, 062307 (2007)

    Article  ADS  Google Scholar 

  45. F Ciccarello, G M Palma and V Giovannetti, Phys. Rev. A 87, 040103 (2013)

    Article  ADS  Google Scholar 

  46. R McCloskey and M Paternostro, Phys. Rev. A 89, 052120 (2014)

  47. R Silva, G Manzano, P Skrzypczyk and N Brunner, Phys. Rev. E 94, 032120 (2016)

    Article  ADS  Google Scholar 

  48. F L S Rodrigues, G De Chiara, M Paternostro and G T Landi, Phys. Rev. Lett. 123, 140601 (2019)

    Article  ADS  Google Scholar 

  49. P Strasberg, G Schaller, T Brandes and M Esposito, Phys. Rev. X 7, 021003 (2017)

    Google Scholar 

  50. D Türkpençe, T Ç Akıncı and S Şeker, Phys. Rev. A 383, 1410 (2019)

    Google Scholar 

  51. D Türkpençe, Phys. Lett. A 384, 126442 (2020)

    Article  Google Scholar 

  52. V Scarani, M Ziman, P Štelmachovic̆, N Gisin and V Bužek, Phys. Rev. Lett. 88, 097905 (2002)

  53. M M Wolf and J I Cirac, Commun. Math. Phys. 279, 147 (2008)

    Article  ADS  Google Scholar 

  54. S N Filippov, J Piilo, S Maniscalco and M Ziman, Phys. Rev. A 96, 032111 (2017)

    Article  ADS  Google Scholar 

  55. T Baumgratz, M Cramer and M B Plenio, Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  56. S Hill and W K Wootters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  57. M V G Dutt, L Childress, L Jiang, E Togan, J Maze, F Jelezko, A S Zibrov, P R Hemmer and M D Lukin, Science 316, 1312 (2007)

    Article  Google Scholar 

  58. E V Denning, D A Gangloff, M Atatüre, J Mørk and C Le Gall, Phys. Rev. Lett. 123, 140502 (2019)

    Article  ADS  Google Scholar 

  59. M Veldhorst, C H Yang, J C C Hwang, W Huang, J P Dehollain, J T Muhonen, S Simmons, A Laucht, F E Hudson, K M Itoh, A Morello and A S Dzurak, Nature 526, 410 (2015)

    Article  ADS  Google Scholar 

  60. D M Zajac, A J Sigillito, M Russ, F Borjans, J M Taylor, G Burkard and J R Petta, Science 359, 439 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  61. Y C Yang, S N Coppersmith and M Friesen, Phys. Rev. A 101, 012338 (2020)

    Article  ADS  Google Scholar 

  62. S Puri and A Blais, Phys. Rev. Lett. 116, 180501 (2016)

    Article  ADS  Google Scholar 

  63. J Atalaya, M Khezri and A N Korotkov, Phys. Rev. A 99, 043810 (2019)

    Article  ADS  Google Scholar 

  64. K W Murch, S J Weber, K M Beck, E Ginossar and I Siddiqi, Nature 499, 62 (2013)

    Article  ADS  Google Scholar 

  65. X L Huang, T Wang and X X Yi, Phys. Rev. E 86, 051105 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank D Türkpençe and Cognitive Systems Laboratory for their contributions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ufuk Korkmaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkmaz, U. Quantum-to-classical transition in a spin star network. Pramana - J Phys 96, 197 (2022). https://doi.org/10.1007/s12043-022-02439-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02439-3

Keywords

PACS Nos

Navigation