Skip to main content
Log in

Bianchi type-I viscous fluid and interacting dark energy cosmological model in general relativity

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we have studied spatially homogeneous anisotropic Bianchi type-I viscous fluid dark energy cosmological model interacting in the framework of scalar tensor theory (Saez–Ballester, Phys. Lett. A 113, 467 (1986)). The field equations are solved by applying a special variation law (power law) for the generalised Hubble parameter. It is observed that the present accelerated expansion of the Universe is affected by the distribution of dark energy. Some physical and geometrical features of the model have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. D Benisty and E I Guendelman, Phys. Rev. D 98, 023506 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  2. D Tamayo and J A Vázquez, Mon. Not. R. Astron. Soc. 487, 729 (2019)

    Article  ADS  Google Scholar 

  3. S Farnes, Astron. Astrophys. 620, A92 (2018)

    Article  ADS  Google Scholar 

  4. B Saha, Int. J. Theor. Phys. 45, 983 (2006)

    Article  Google Scholar 

  5. S Perlmutter et al, Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  6. M Cataneo et al, Mon. Not. R. Astron. Soc. 488, 2121 (2019)

    Article  ADS  Google Scholar 

  7. A Costa et al, Mon. Not. R. Astron. Soc. 488, 78 (2019)

    Article  ADS  Google Scholar 

  8. B Liu, Z Li and Z H Zhu, Mon. Not. R. Astron. Soc. 487, 1980 (2019)

    Article  ADS  Google Scholar 

  9. S Mitra et al, Mon. Not. R. Astron. Soc. 487, 5118 (2019)

    Article  ADS  Google Scholar 

  10. A A Aly, Pramana – J. Phys. 92, 34 (2019)

    Article  ADS  Google Scholar 

  11. V C Dubey et al, Pramana – J. Phys. 93, 78 (2019)

    Article  ADS  Google Scholar 

  12. C P Singh and A Kumar, Astrophys. Space Sci. 364, 94 (2019)

    Article  ADS  Google Scholar 

  13. D Perkovic and H Stefancic, Phys. Lett. B 797, 134806 (2019)

    Article  MathSciNet  Google Scholar 

  14. A Pradhan, H Amirhashchi and B Saha, Int. J. Theor. Phys. 50, 2923 (2011)

    Article  Google Scholar 

  15. G K Goswami et al, Mod. Phys. Lett. A 35, 2050086 (2020)

    Article  ADS  Google Scholar 

  16. S D Katore et al, Hindawi Adv. High Energy Phys. 2018, 2854567 (2018)

    MathSciNet  Google Scholar 

  17. R Bali, A Pradhan and A Rai, Prespacetime J. 5, 7 (2014)

    Google Scholar 

  18. K Nordtvedt Jr, Astrophys. J. 161, 1059 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  19. D Saez and V J Ballester, Phys. Lett. A 113, 9, 467(1986)

    Article  ADS  Google Scholar 

  20. A Y Shaikh et al, J. Astrophys. Astron. 40, 25 (2019)

    Article  ADS  Google Scholar 

  21. R Bali and N K Chandnani, J. Math. Phys. 49, 032502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. N A Bahcall, Proc. Natl. Acad. Sci. 112, 3173 (2015)

    Article  ADS  Google Scholar 

  23. R R Caldwell et al, Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  24. V Sahni and A A Starobinsky, Int. J. Mod. Phys. D 9, 373(2000)

    Article  ADS  Google Scholar 

  25. R Bali and J P Singh, Int. J. Theor. Phys. 47, 3288 (2008)

    Article  Google Scholar 

  26. A G Riess et al, Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  27. M S Berman and F M Gomide, Gen. Relativ. Gravit. 20, 2 (1988)

    Google Scholar 

  28. C P Singh and S Kumar, Astrophys. Space Sci. 310, 31 (2007)

    Article  ADS  Google Scholar 

  29. B Ratra and P J E Peebles, Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  30. R R Caldwell, Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  31. C A Picon, V Mukhanov and P J Steinhart, Phys. Rev. D 63, 3510 (2001)

    Google Scholar 

  32. B Feng, X Wang and X Zhang, Phys. Lett. B 607, 35 (2005)

    Article  ADS  Google Scholar 

  33. J Swang and S Y Wang, J. Astron. Astrophys. 564, A137 (2014)

    Article  ADS  Google Scholar 

  34. H Amirhashchi, Astrophys. Space Sci. 351, 641 (2014)

    Article  ADS  Google Scholar 

  35. D Pavón and B Wang, Gen. Relativ. Gravit. 41, 1 (2009)

    Article  ADS  Google Scholar 

  36. Z K Gou, N Ohta and S Tsujikawa, Phy. Rev. D 76, 023508 (2007)

    Article  ADS  Google Scholar 

  37. V U M Rao and D Neelima, The Afr. Rev. Phys. 8, 0059 (2013)

    Google Scholar 

  38. C Eckart, Phys. Rev. 58, 919 (1940)

    Article  ADS  Google Scholar 

  39. L Amendola, G C Campos and R Rosenfeld, Phys. Rev. D 75, 083506 (2007)

    Article  ADS  Google Scholar 

  40. S Nojiri and S D Odintsov, Phys. Lett. B 562, (2003)

  41. V Sahni et al, J. Electron. Theor. Phys. Lett. 77, 201 (2003)

    Article  Google Scholar 

  42. U K Sharma et al, Mod. Phys. Lett. A 34, 1950101 (2019)

    Article  ADS  Google Scholar 

  43. A Dixit et al, New Astron. 73, 101281 (2019)

    Article  Google Scholar 

  44. M R Setare, J. Cosmol. Astropart. Phys. 01, 023 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  45. G-B Zhao, Nat. Astron. 1, 627 (2017)

    Article  ADS  Google Scholar 

  46. M A H MacCallum, Commun. Math. Phys. 20, 57 (1971)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee for helpful comments and suggestions that have helped improving the manuscript. The authors are grateful to Prof. Raj Bali for kind suggestions. SK and MH are thankful to UGC, New Delhi, India and Dr Harisingh Gour Vishwavidyalaya for providing financial assistance in the form of UGC’s Central Universities non-NET Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Kumar Yadav.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Yadav, M.K., Gangele, R.K. et al. Bianchi type-I viscous fluid and interacting dark energy cosmological model in general relativity. Pramana - J Phys 96, 195 (2022). https://doi.org/10.1007/s12043-022-02434-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02434-8

Keywords

PACS Nos

Navigation