Skip to main content
Log in

Dielectric superconductor binary photonic crystal as an optical sensor for the detection of Escherichia coli bacteria

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A dielectric superconductor binary photonic crystal (PC) is investigated as an optical sensor for detecting Escherichia coli (E. coli) bacteria. The structure of the proposed PC is (Si\({/}\)superconductor)N(E. coli)\({/}\)(Si\({/}\)superconductor)N. Four different high critical temperature superconductors are employed in the structure. These superconducting materials have temperature- and frequency-dependent refractive indices. Transmission spectra of the PC are investigated and the sensitivity to E. coli bacteria is found to be 165.735 nm\({/}\)RIU. The sensitivity dependences on the thickness of the defect layer and superconductor material, operating temperature and angle of incidence are investigated. The sensitivity, figure of merit and quality factor are 296.754 nm\({/}\)RIU, 27936.5 RIU−1 and 66913, respectively, when optimum values of these parameters are employed. It is also found that the superconductor Bi2Sr2Ca2Cu3O10, which has the lowest London penetration length, corresponds to the highest sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. V K Tyagi, A K Chopra, A A Kazmi and A Kumar, J. Environ. Health Sci. Eng. 3, 205 (2006)

    Google Scholar 

  2. A Verma, A Prakash and R Tripathi, Opt. Quantum Electron. 47, 1197 (2015)

    Google Scholar 

  3. A Rompré, P Servais, J Baudart, M R De-Roubin and P Laurent, J. Microbiol. Methods 49, 31 (2002)

    Google Scholar 

  4. C Adley, Foods 3, 491 (2014)

    Google Scholar 

  5. J B Maurya and Y K Prajapati, Opt. Quantum Electron. 48, 280 (2016)

    Google Scholar 

  6. L Wei, J Lu, H Xu, A Patel, Z-S Chen and G Chen, Drug Discov. Today 20, 595 (2015)

    Google Scholar 

  7. G M Paternò, L Moscardi, S Donini, D Ariodanti, I Kriegel, M Zani, E Parisini, F Scotognella and G Lanzani, J. Phys. Chem. Lett. 10, 4980 (2019)

    Google Scholar 

  8. S A Taya, N Doghmosh and A Upadhyay, Opt. Quantum Electron. 53, 35 (2021)

    Google Scholar 

  9. P Elahi, H Nadgaran and F Kalantarifard, Pramana – J. Phys. 68, 529 (2007)

    ADS  Google Scholar 

  10. S A Taya and S A Shaheen, Indian J. Phys. 92, 519 (2018)

    ADS  Google Scholar 

  11. Y Kalra and R K Sinha, Pramana – J. Phys. 67, 1155 (2006)

    ADS  Google Scholar 

  12. E Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    ADS  Google Scholar 

  13. S John, Phys. Rev. Lett. 58, 2486 (1987)

    ADS  Google Scholar 

  14. T F Krauss, R M Rue and S Brand, Nature 383, 699 (1996)

    ADS  Google Scholar 

  15. J Winn, Y Fink, S Fan and J Joannopoulos, Opt. Lett. 23, 1573 (1998)

    ADS  Google Scholar 

  16. F Segovia-Chaves and H Vinck-Posada, Physica B 545, 203 (2018)

    ADS  Google Scholar 

  17. N Lepeshkin, A Schweinsberg, G Piredda, R Bennink and R Boyd, Phys. Rev. Lett. 93, 123902 (2004)

    ADS  Google Scholar 

  18. D Chan, M Soljacic and J Joannopoulos, Phys. Rev. E 74, 016609 (2006)

    ADS  Google Scholar 

  19. M Povinelli, S Johnson, J Joannopoulos and J Pendry, Appl. Phys. Lett. 82, 1069 (2003)

    ADS  Google Scholar 

  20. K Jim, D Wang, C Leung, C Choy and H Chan, J. Appl. Phys. 103, 083107 (2008)

    ADS  Google Scholar 

  21. Y Ju, Opt. Quantum Electron. 52, 485 (2020)

    Google Scholar 

  22. S Boscolo and M Midrio, Opt. Quantum Electron. 36, 459 (2004)

    Google Scholar 

  23. Z Yu, Z Wang and S Fan, Appl. Phys. Lett. 90, 121133 (2007)

    ADS  Google Scholar 

  24. L Nucara, F Greco and V Mattoli, J. Mater. Chem. C 3, 8449 (2015)

    Google Scholar 

  25. F Rahman, Opt. Photon. News 20, 24 (2009)

    ADS  Google Scholar 

  26. C Wiesmann, K Bergenek, N Linder and U T Schwarz, Laser Photon. Rev. 3, 262 (2009)

    ADS  Google Scholar 

  27. H Yokoyama, Science 256, 66 (1992)

    ADS  Google Scholar 

  28. K J Vahala, Nature 424, 839 (2003)

    ADS  Google Scholar 

  29. R H Hadfield, Nat. Photon. 3, 696 (2009)

    ADS  Google Scholar 

  30. Z Gu, J Wu and C Zhang, Opt. Quantum Electron. 52, 360 (2020)

    Google Scholar 

  31. K Hong, H Park, B Kim, I Hwang, W Jin, J Ju and D Yeom, Appl. Phys. Lett. 92, 031110 (2008)

    ADS  Google Scholar 

  32. T Drysdale, I Gregory, C Baker, E Linfield, W Tribe and D Cumming, Appl. Phys. Lett. 85, 5173 (2004)

    ADS  Google Scholar 

  33. Y Kim, S Lin, H Wu and R Pan, J. Appl. Phys. 109, 123111 (2011)

    ADS  Google Scholar 

  34. L Dhandrapati and S Tupakula, Optik 256, 168734 (2022)

    ADS  Google Scholar 

  35. P Karami and H K Salehani, Optik 241, 167004 (2021)

    ADS  Google Scholar 

  36. F Segovia-Chaves, J C Yague and H Vinck-Posada, Optik 240, 166823 (2021)

    ADS  Google Scholar 

  37. Y Ma, H Zhang, H Zhang, T Liu and W Li, Appl. Opt. 57, 8119 (2018)

    ADS  Google Scholar 

  38. S Guo, C Hu and H Zhang, J. Opt. Soc. Am. B 37, 2678 (2020)

    ADS  Google Scholar 

  39. C Hu, H Zhang and G Liu, Appl. Opt. 58, 2890 (2019)

    ADS  Google Scholar 

  40. H-F Zhang, AIP Adv. 8, 015304 (2018)

    ADS  Google Scholar 

  41. K B Thapa, S Srivastava, A Vishwakarma and S Ojha, Optoelectron. Lett. 7, 277 (2011)

    ADS  Google Scholar 

  42. G Pandey, K B Thapa and S Ojha, Optik 125, 252 (2013)

    ADS  Google Scholar 

  43. S A Taya, D N Alhamss, I Colak and S K Patel, Opt. Quantum Electron. 54, 127 (2022)

    Google Scholar 

  44. Z Zarea and A Gharaati, Eur. Phys. J. D 74, 140 (2020)

    ADS  Google Scholar 

  45. S A Taya, N Doghmosh, M A Abutailkh, A Upadhyay, Z M Nassar and I Colak, Optik 243, 167505 (2021)

    ADS  Google Scholar 

  46. S A Taya, O M Ramahi, M A Abutailkh, N Doghmosh, Z M Nassar, A Upadhyay and I Colak, Indian J. Phys. (2021), https://doi.org/10.1007/s12648-021-02151-9

    Google Scholar 

  47. A Banerjee, PIER 89, 11 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code (NU\({/}\)RG\({/}\)SERC\({/}\)11\({/}\)16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofyan A Taya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taya, S.A., Doghmosh, N., Sharma, A. et al. Dielectric superconductor binary photonic crystal as an optical sensor for the detection of Escherichia coli bacteria. Pramana - J Phys 96, 215 (2022). https://doi.org/10.1007/s12043-022-02432-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02432-w

Keywords

PACS Nos

Navigation