Skip to main content
Log in

Compact optical scheme for the generation of ultrafast mid-IR laser pulses

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Several optical techniques that are often employed to generate mid-IR pulses are discussed. These are based on a difference frequency generation (DFG) process for mixing signal and idler pulses generated from optical parametric oscillators that are synchronously pumped by Ti:Sapphire laser. Here, we proposed a new optical scheme that improves the day-to-day operation stability and the ease of manoeuvring spectrum anywhere in the 2 to 10 μm range. The demonstrated scheme is very compact and cost-effective, and we believe this optical scheme will be helpful for researchers working with mid-IR pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. R S McDonald, Anal. Chem. 58, 1906 (1986)

    Article  Google Scholar 

  2. H H Mantsch and R N McElhaney, J. Mol. Struct. 217, 347 (1990)

    Article  ADS  Google Scholar 

  3. G F Monnier, J. Archaeol. Sci. Rep. 18, 806 (2018)

    Google Scholar 

  4. V Iyer, P Ye and X Xu, 2D Mater. 4, 021032 (2017)

    Article  Google Scholar 

  5. T-T Yeh, H Shirai, C-M Tu, T Fuji, T Kobayashi and C-W Luo, Sci. Rep. 7, 40492 (2017)

    Article  ADS  Google Scholar 

  6. S R G Naraharisetty, D V Kurochkin and I V Rubtsov, Chem. Phys. Lett. 437, 262 (2007)

    Article  ADS  Google Scholar 

  7. M Khalil, N Demirdöven and A Tokmakoff, J. Phys. Chem. A 107, 5258 (2003)

    Article  Google Scholar 

  8. R Fernández-Terán and P Hamm, J. Chem. Phys. 153, 154706 (2020)

    Article  ADS  Google Scholar 

  9. B H Jones, C J Huber and A M Massari, J. Phys. Chem. C 115, 24813 (2011)

    Article  Google Scholar 

  10. P A Cazade, H Tran, T Bereau, A K Das, F Kläsi, P Hamm and M Meuwly, J. Chem. Phys. 142, 212415 (2015)

    Article  ADS  Google Scholar 

  11. N Müller, L Brückner and M Motzkus, APL Photonics 3, 092406 (2018)

    Article  ADS  Google Scholar 

  12. E A Muller, B Pollard and M B Raschke, J. Phys. Chem. Lett. 6, 1275 (2015)

    Article  Google Scholar 

  13. Y Yu, X Gai, T Wang, P Ma, R Wang, Z Yang, D-Y Choi, S Madden and B Luther-Davies, Opt. Mater. Express 3, 1075 (2013)

    Article  ADS  Google Scholar 

  14. K Liu, J Liu, H Shi, F Tan and P Wang, Opt. Express 22, 24384 (2014)

    Article  ADS  Google Scholar 

  15. Y Yao, A J Hoffman and C F Gmachl, Nat. Photon. 6, 432 (2012)

    Article  ADS  Google Scholar 

  16. P Liu and Z Zhang, Opt. Lett. 44, 3988 (2019)

    Article  ADS  Google Scholar 

  17. C Gu, M Hu, L Zhang, J Fan, Y Song, C Wang and D T Reid, Opt. Lett. 38, 1820 (2013)

    Article  ADS  Google Scholar 

  18. J Ma, Z Qin, G Xie, L Qian and D Tang, Appl. Phys. Rev. 6, 021317 (2019)

    Article  ADS  Google Scholar 

  19. S D Jackson, Nat. Photon. 6, 423 (2012)

    Article  ADS  Google Scholar 

  20. X Zhu, G Zhu, C Wei, L V Kotov, J Wang, M Tong, R A Norwood and N Peyghambarian, J. Opt. Soc. Am. B 34, A15 (2017)

    Article  ADS  Google Scholar 

  21. L D DeLoach, R H Page, G D Wilke, S A Payne and W F Krupke, IEEE J. Quantum Electron. 32, 885 (1996)

    Article  ADS  Google Scholar 

  22. S B Mirov, I S Moskalev, S Vasilyev, V Smolski, V V Fedorov, D Martyshkin, J Peppers, M Mirov, A Dergachev and V Gapontsev, IEEE J. Sel. Top. Quantum Electron. 24, 1601829 (2018)

    Article  Google Scholar 

  23. F Rotermund, V Petrov and F Noack, Opt. Commun. 185, 177 (2000)

    Article  ADS  Google Scholar 

  24. M Beutler, I Rimke, E Büttner, P Farinello, A Agnesi, V Badikov, D Badikov and V Petrov, Opt. Express 23, 2730 (2015)

    Article  ADS  Google Scholar 

  25. O Isaienko and E Borguet, Opt. Express 16, 3949 (2008)

    Article  ADS  Google Scholar 

  26. Y V Aulin, A Tuladhar and E Borguet, Opt. Lett. 43, 4402 (2018)

    Article  ADS  Google Scholar 

  27. S Ehret and H Schneider, Appl. Phys. B 66, 27 (1998)

    Article  ADS  Google Scholar 

  28. J M Fraser, D Wang, A Haché, G R Allan and H M van Driel, Appl. Opt. 36, 5044 (1997)

    Article  ADS  Google Scholar 

  29. C Sahoo, M Sethupathy, N A Saad, D N Rao and S R G Naraharisetty, J. Instrum. 13, P10027 (2018)

    Article  Google Scholar 

  30. M Ghotbi, M Ebrahim-Zadeh, V Petrov, P Tzankov and F Noack, Opt. Express 14, 10621 (2006)

    Article  ADS  Google Scholar 

  31. V Petrov, F Noack, P Tzankov, M Ghotbi, M Ebrahim-Zadeh, I Nikolov and I Buchvarov, Opt. Express 15, 556 (2007)

    Article  ADS  Google Scholar 

  32. V Petrov et al, Laser Photon. Rev. 4, 53 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from DST-SERB (EMR\({/ }\)000546, EMR\({/ }\)000516), DST-Purse, Respond Project ISRO and UoH Institute of Eminence (IoE) Grant RC1-20-011. Vinod K Rajput acknowledges a fellowship from the Indian Space Research Organisation (ISRO) (Grant No. ISRO\({/ }\)RES\({/ }\)3\({/ }\)799), India for the financial support. Prasenjit Jana acknowledges the PMRF (Prime Minister Research Fellowship) funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sri Ram G Naraharisetty.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, V.K., Jana, P., Ponnan, S. et al. Compact optical scheme for the generation of ultrafast mid-IR laser pulses. Pramana - J Phys 96, 198 (2022). https://doi.org/10.1007/s12043-022-02426-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02426-8

Keywords

PACS No

Navigation