Skip to main content
Log in

Models for charged relativistic spheres via hyper-geometric equations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Exact solutions to Einstein–Maxwell systems play an important role in relativistic astrophysics. In this paper, a new technique to generate exact solutions to the Einstein–Maxwell system is proposed. Corresponding to a spherically symmetric charged fluid sphere, by specifying the electric field and for a particular form of the metric potential \(g_{rr}\), a new solution is obtained in terms of hypergeometric functions. Subsequently, for specific choice of model parameters, many closed-form solutions are developed. In the process, it is possible to regain a number of well-known stellar models which had been developed earlier with or without the presence of charge following the Vaidya and Tikekar ansatz for compact stars (J. Astrophys. Astron. 3:325 (1982); J. Math. Phys. 31:2454 (1990)). It is shown that the new class of solutions can be used as viable models for compact stars for a wide range of values of the model parameters. Physical behaviour of the resultant stellar configurations are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K Schwarzschild, On the gravitational field of a sphere of incompressible fluid according to Einstein’s theory, physics/9912033v1 (1999)

  2. K Schwarzschild, On the gravitational field of a mass point according to Einstein’s theory, physics/9905030 (1999)

  3. B V Ivanov, Phys. Rev. D 65, 104001 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. W B Bonner, Mon. Not. R. Astron. Soc. 129, 443 (1965)

    Article  ADS  Google Scholar 

  5. P G Whitman and R C Burch, Phys. Rev. D 24, 2049 (1981)

  6. R Sharma, S Mukherjee and S D Maharaj, Gen. Relativ. Gravity 33, 999 (2001)

    Article  ADS  Google Scholar 

  7. B Mukherjee, Acta Phys. Hung. A 13, 243 (2001)

    Article  Google Scholar 

  8. R Tikekar and G P Singh, Grav. Cosmol. 4, 294 (1998)

    ADS  Google Scholar 

  9. L K Patel, R Tikekar and M C Sabu, Gen. Relativ. Gravity 29, 489 (1997)

    Article  ADS  Google Scholar 

  10. P C Vaidya and R Tikekar, J. Astrophys. Astron. 3, 325 (1982)

    Article  ADS  Google Scholar 

  11. K Komathiraj and S D Maharaj, J. Math. Phys. 48, 042501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. R Tikekar, Gen. Relativ. Gravity 16, 445 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  13. J Kumar, A K Prasad, S K Maurya and A Banerjee, Eur. Phys. J. C 78, 540 (2018)

    Article  ADS  Google Scholar 

  14. M H Murad and S Fatema, Eur. Phys. J. C 75, 533 (2015)

    Article  ADS  Google Scholar 

  15. R Sharma, N Dadhich, S Das and S D Maharaj, Eur. Phys. J. C 81, 79 (2021)

    Article  ADS  Google Scholar 

  16. S Thirukkanesh and S D Maharaj, Class. Quantum Gravity 25, 35001 (2008)

    Article  Google Scholar 

  17. S D Maharaj and S Thirukkanesh, PramanaJ. Phys. 72, 481 (2009)

    Article  ADS  Google Scholar 

  18. V Varela, F Rahaman, S Ray, K Chakraborty and M Kalam, Phys. Rev. D 82, 044052 (2010)

    Article  ADS  Google Scholar 

  19. M C Durgapal and R Banerjee, Phys. Rev. D 27, 328 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  20. A D Polyania and V F Zaitsev, Handbook of exact solutions for ordinary differential equations (Chapman and Hall/CRC, New York, 2003)

    Google Scholar 

  21. R Tikekar, J. Math. Phys. 31, 2454 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  22. M S R Delgaty and K Lake, Comput. Phys. Commun. 115, 395 (1998)

    Article  ADS  Google Scholar 

  23. J R Ipser, Astron. Space Sci. 7, 361 (1970)

    Article  ADS  Google Scholar 

  24. H Heintzmann and W Hillebrandt, Astron. Astrophys. 38, 51 (1975)

    ADS  Google Scholar 

Download references

Acknowledgements

RS gratefully acknowledges the support from the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India, under its Visiting Research Associateship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirukkanesh, S., Saparamadu, I., Sharma, R. et al. Models for charged relativistic spheres via hyper-geometric equations. Pramana - J Phys 96, 183 (2022). https://doi.org/10.1007/s12043-022-02424-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02424-w

Keywords

PACS

Navigation